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A new Approach for the Forward Kinematics of
General Stewart-Gough Platforms
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Abstract—In this paper a complete forward kinematics
analysis of a general Stewart-Gough platform is performed. A
new methodology to deal with the forward kinematics problem
based on a multibody formulation is presented. An iterative
algorithm is proposed and the forward kinematics using a
numerical method is solved. Finally, a design of a simulator using
MATLAB as programming tool is presented.

Index Terms—Forward Kinematics, MATLAB R©, Multibody
Formulation, Numeric Method, Parallel Platform, Quaternions.

I. INTRODUCTION

AParallel Robot is a type of mechanism that has multiple
kinematic chains (limbs) connecting their base with a

moving platform (called end effector). Normally, each kine-
matic chain has a series of links connected by joints. Because
of this, parallel robots have many advantages compared to
serial robots, such as high speed, low inertia, high stiffness
and large payload capacity.

The kinematic analysis of a robot studies the relationship
between the location and orientation of the end effector
and its joints values. Because we could have as unknown
actuators position given the end-effector position or vice versa,
kinematics is classified in forward and inverse kinematics.

The solution of the forward kinematics consists of deter-
mining the position and orientation of the end effector given
the joint values, for the inverse kinematics the joints values are
known and the problem is to find the position and orientation
of the end effector.

For a parallel mechanism, inverse kinematic solution is
very straight forward and can be performed using basic
geometric approaches, but forward kinematic solution is very
difficult, because we could have multiple solutions due to the
mechanism structure [1] . The two common approaches to
solve the forward kinematic problem consist of a polynomial
based approach and a numerical solution.

Some authors [2], [3], [4], [5], [6] have solved the forward
kinematics problem using purely geometric analysis, which
results in high degree polynomials with multiple solutions.
Therefore, obtaining a unique solution is difficult due to the
complex manipulation of mathematical equations that we have
to perform.

On the other hand, some other authors [7], [8], [9], have
established numeric methods to solve forward kinematics
using for example: interval analysis or kinematics mapping
method. However, the forward kinematics of a parallel
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mechanism is still a challenging task due to the complicated
formulation procedures and high computational cost.

In this paper the Stewart - Gough (SG) Platform is studied.
The SG platform is the most known parallel mechanism
and is used in many robotic fields. Some applications
of the SG platform are: flight simulators, haptic devices,
milling machines, underwater vehicles, micro mechanisms,
medical instrumentation and even shaking tables (earthquake
simulators, landing deck for helicopters [10]).

There are many variants of a general Stewart Gough
Platform (according to arrangements of the connecting joints
in the fixed and moving platform), the different types have
been proposed in order to find a closed form solution and
simplify the forward kinematics problem.

For a general type, the polynomial analysis results in 12
equations with 12 unknowns, where each equation is of second
degree highly nonlinear. Since the equations are of second
degree, the Bezout number is 212, resulting in 4096 solutions.
However, taking some considerations, some researchers have
found up to 40 real solutions [8].

Other common type of SG platform is known as 3-6
platform. In this case, some researchers [11], [12] have
shown that the forward kinematics solution results in a
16th-order polynomial. The other approach to solve the
forward kinematics is to use a numerical method, which has
shown to be more suitable to solve the forward kinematic
problem. Some researchers [11], [12] have proposed numerical
procedures using the Newton - Raphson method. However,
they are used three unknown angles related with the moving
platform orientation resulting in some problems due to the
calculation of the partial derivative matrix and its inverse.

The aim of this paper is to present a new methodology that
simplifies the forward kinematic problem, resulting in a highly
efficient formulation approach. The proposed solution consists
in modeling the constraints of movement for all moving parts,
especially the joints, performing what is called a multibody
formulation.

The idea of a multibody formulation is basically to built for
each joint that links the body of the robot, a set of equations
that define the constraints on their movement so that the
joint variables are included in these equations [13]. Once the
constraint function is defined, we may use a numerical method
to find the kinematic solution. In order to avoid the problem
reported with the orientation (Euler’s Angles) of the moving
platform, a generalized coordinates vector using quaternions
is applied.

This article is organized as follows. First, the geometry of
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the mechanism is presented. Then, a numerical method for
solving the forward kinematics based on a restriction function
is detailed and Newton-Raphson iterative method is applied.
Finally, a simulator to verify the results obtained is presented,
MATLAB R© as programming language and a platform testing
is used.

II. THE STEWART-GOUGH PLATFORM

The Stewart-Gough platform consists of a fixed base and
a moving platform which are joined together by six identical
limbs. Each limb connect the moving platform to the fixed
base using passive spherical joints (S). Also, these limbs are
compose of two links, an upper member and a lower member,
connected by a prismatic joint (P ), as shown in Fig. 1.

O

Li

S

S

Fixed base

Moving platform

Prismatic joint

Spherical joint

Spherical joint

Fig. 1. Stewart-Gough platform.

Hydraulics or linear actuators can be used to change the
length of the limbs and thus, to control de location (position
and orientation) of the moving platform. In addition, the lower
spherical joints can be change to universal joints (U ) without
losing the overall degrees of freedom of the mechanism,
resulting in a 6UPS robot.

A. Degrees of Freedom of the Mechanism

The Degrees of Freedom (DoF) of a mechanism are the
number of independent parameters to specify the configuration
of the mechamism [3]. According to Grübler and Kutzbatch,
the DoF of a mechanism are given by:

F = λ(n− j − 1) +

n∑
i=1

fi (1)

where,

F : DoF of the mechanism.
λ : DoF of the space in which the robot will work.
n : number of links in the mechanism, including the base.
j : number of joints in the mechanism.
fi : degrees of relative motion permitted in the joint i.

For example, considering a Stewart Gough platform (6UPS)
we have, λ = 6, n = 14, j1 = 6, j2 = 6, j3 = 6. Substituting
this values into (1), we obtain

F = 6(14− 18− 1) + (6× 1 + 6× 2 + 6× 3) = 6 DoF

B. Geometry of the Mechanism

The geometry of the mechanism can be found taking some
geometric considerations. To begin the analysis consider Fig.
2, where two Cartesian coordinate systems are attached to
the fixed base and moving platform, respectively. Hence, the
relative orientation between the moving reference frame Puvw

and the fixed reference frame Oxyx is given by the rotation
matrix 0RP , a vector-loop equation for the ith leg can be
written as:

O−→a i +
−→
L i = −→p +O RP

P−→b i (2)
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Fig. 2. Geometry of a Stewart-Gough platform.

where P−→b i is the vector localization of the anchoring of
the ith limb on the moving platform expressed on the moving
reference frame Puvw , O−→a i is the vector localization of the
anchoring of the ith limb on the fixed base expressed on the
fixed reference frame Ouvw and −→p is the position vector of
the centroid in the moving platform.

Thus, the length of each leg is given by:
−→
L i = ‖−→p +0 RP

P−→b i −−→ai‖ (3)

To completely describe the location of the moving platform
with respect to the fixed base we can write six times (3), one
for each leg (i = 1, 2, . . . , 6).

III. FORWARD KINEMATIC ANALYSIS

The problem of the forward kinematic solution is to find the
vector position −→p and the orientation of the moving platform
expressed by the rotation matrix 0RP , given the limb lengths
Li for(i = 1, 2, . . . , 6).
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The position vector has three scalar unknowns, while the
rotation matrix contains nine scalar unknowns. According to
Tsai [3], and taking some considerations we obtained 12
equations in 12 unknowns.

The method proposed in this paper consists in the formu-
lation of a multibody model of restrictions and then applying
the Newton-Raphson method to approximate the solution. This
is an iterative numerical method which starts with a initial
estimated value of the the vector position and the orientation
of the moving platform.

To apply the method lets consider Fig. 3, where two
positions for the end-effector have been taken, first one in the
”home” position and the other one in an arbitrary position.

O

P

P'

A

B

Fig. 3. Configuration Chosen for the forward kinematics Solution.

The analysis begins estimating the position of the end-
effector and writing the estimation as a generalized coordinates
vector, that is:

q =
[
p r

]
(4)

Where p is the estimated position of the moving plat-
form (x0, y0, z0), and r is an Hamiltonian Quaternion
(e0, e1, e2, e3) which describes the estimated orientation of the
moving platform. To find the Quaternion, we begin estimating
the Euler’s angles (ψ, θ, φ) of the moving platform and then
calculating its equivalent Quaternion.

Then, a loop-closure equation can be written for the ith limb
as:

−−→
OP +

−−→
PP ′ +

−−→
P ′B −

−→
OA−

−−→
AB = 0 (5)

Thus, from (5), an objective function for the first limb can
be written as:

φ(q) = l(q)− l0 (6)

Where:

l(q) = ||
−−→
OP ||+ ||

−−→
PP ′||+ ||

−−→
P ′B|| − ||

−→
OA||, and

l0 = ||
−−→
AB||

Vector
−−→
OP , represents the end-effector position at ”home”

(where,ψ = 0, θ = 0, φ = 0),
−−→
PP ′ is the displacement

vector from the center of the moving platform at ”home” to
the center of the estimated position of the moving platform,−−→
P ′B represents the distance from joint position attached to
the moving platform to the center of the platform,

−→
OA is the

actuator position from the origin (centroid of the fixed base),−−→
AB is the length of the link that connected the fixed base with
the moving platform.

Following the same procedure for the other five kinematic
chains, the constraint function for the entire system can be
written as:

F (q) =


φ1(q)
φ2(q)
φ3(q)
φ4(q)
φ5(q)
φ6(q)

 =


l1(q)− l0,1
l2(q)− l0,2
l3(q)− l0,3
l4(q)− l0,4
l5(q)− l0,5
l6(q)− l0,6

 (7)

In order to find the real position of the moving platform, we
can start making a Taylor series expansion of the restrictions
function. If we take the first two terms in the series and neglect
the higher orders terms we have:

F (q) = Fq(q)∆q (8)

In (8), Fq(q), represents the restrictions function derivate
and is called the restrictions function Jacobian, the Jacobian
is given by [13]:

Fq =


UT
1 −2UT

1 Rã
′
1G

UT
2 −2UT

2 Rã
′
2G

UT
3 −2UT

3 Rã
′
3G

UT
4 −2UT

4 Rã
′
4G

UT
5 −2UT

5 Rã
′
5G

UT
6 −2UT

6 Rã
′
6G

 (9)

Where:

Ui : Unit vector of the restrictions function.

R : Rotation Matrix of the end-effector.

ãi : Skew matrix related with the joint position of the fixed
base.
G : Rotation matrix that links the moving platform with

the variation of the Quaternion.

As defined in [13], the matrix G in (9) can be expressed
using Euler’s parameters as:

G =

−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

 (10)

Once Fq is known, Eq.(8) can be written as:

∆q = −F (q)F †q (q) (11)

Equation (11) is known as Newton-Rhapson Method, where
F †q is a pseudoinverse matrix. Then, the estimated value is
updated iteratively via :
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qi = qi−1 + ∆q (12)

The algorithm continues and the forward kinematic solution
is obtained when

∥∥F (q)
∥∥ ≤ ε, where ε is a fixed threshold.

Fig. 4, shows a flowchart for the forward kinematic solution.

Fq=J(F(q))

||F(q)||≤ɛ

F(q)=l(q)-lo

r, p ,L

q=[r p], l(q), lo

START

qi=qi-1-F*F'q

l(q), F(q)

position=p

orientation=r
END

We have as input value, estimated position (r) and orientation (p), 
and the limbs length (L) 

A generalized coordinate vector(q), an objetive function l(q)
and lo are established.

  A constraint Function F(q) is found

 Constraint function Jacobian Fq is computed

Estimated value is updated via Newton-Raphson

Constraint function F(q) is updated

YES

NO

Fig. 4. Forward kinematic solution algorithm [14].

IV. IMPLEMENTATION

The tests have been performed using the software
MATLAB R©R2014a. To validate the forward kinematics
solutions for the SG Platform proposed in this paper, a
series of functions was developed. The main function has
as input value the geometry of the robot (Links, fixed base
and moving platform dimensions), the lengths of the limbs
and the estimated position and orientation (Euler’s Angles:
roll,pitch and yaw) of the moving platform.

The program consists of 7 functions, function structure is
shown in Fig 5., while a screenshot of the program running is
depicted in Fig. 6.

CD_SG

I=[geo,p_est,r_est,L]

O=[pos_efect,or_efect]

euler_ang2mrot

I=[euler_ang]

O=[mrot]

Jacobian

I=[geo,q]

O=[ J ]

cuaternion2G

I=[cuaternion]
O=[ G ]

graph

I=[geo,q]

O=

mrot2cuaternion

I=[mrot]

O=[cuaternion]

cuaternion2euler_ang

I=[cuaternion]

O=[euler_ang]

Fig. 5. Simulator Functions.

Fig. 6. Stewart Gough Platform Simulation.

A. Tests Performed

For the Tests performed we considered that the coordinates
of the Ai points were:

A1[28.9778 7.7646 0]; A2[−7.7646 28.9778 0]

A3[−21.2132 21.2132 0]; A4[−21.2132 − 21.2132 0]

A5[−7.7646 − 28.9778 0]; A6[28.9778 − 7.7646 0]

while the coordinates of the Bi at home, respect to the
fixed base (point O) were:

B1[14.1421 14.1421 40]; B2[5.1764 19.3185 40]

B3[−19.3185 5.1764 40]; B4[−19.3185 − 5.1731 40]

B5[5.1764 − 19.3185 40]; B6[14.1421 − 14.1421 40]

Furthermore, the position of the centroid of the moving
platform at home is: P[0 0 40] and the orientation is:
roll = picth = yaw = 0◦.

For the tests, two sets of the leg lengths were taken. Then,
for each set, 5 random estimated values of the position and
orientation of the moving platform were considered, and the
real values were found.

The computer used to perform the tests, has the following
features:

• Brand: MacBook Pro
• Processor: 2.3 GHz Intel Core i5
• RAM: 16 GB
• Storage: 1 TB (SSHD)

Test 1
In test 1, the position of the leg lengths were:
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L1 = 55.8558 L2 = 62.5313 L3 = 52.7436

L4 = 55.1457 L5 = 44.7972 L6 = 51.9910

while the real values of the position and orientation for
these values are:

p = [0 0 50] and roll = 20◦; pitch = 0◦, yaw = −30◦

Table I shows the five estimated random values of the
position and orientation and its computation time. For the
five estimated values, the algorithm converged quickly and
the real values were found.

TABLE I

Est. position (x,y,z) Est. Orientation (ψ, θ, φ) Computation Time (sec)

[0, 20, 20] [10, 100, 5] 0.02227

[0, 30, 60] [0,−20,−10] 0.01247

[20,−15, 70] [20,−20, 50] 0.02547

[−20, 5, 50] [−20,−20,−50] 0.02532

[20,−10, 40] [60, 70, 50] 0.01196

Fig. 7 shows the real configuration and the five positions
and orientations that were estimated.

Real posture Estimation 1

Estimation 2 Estimation 3

Estimation 4 Estimation 5

Fig. 7. Postures for Test 1. The real one and the estimations.

Test 2
In test 2, the position of the leg lengths were:

L1 = 45.9508 L2 = 45.5433 L3 = 47.5475

L4 = 49.2052 L5 = 51.0617 L6 = 36.3669

while the real values of the position and orientation for
these values are:

p = [10 10 40] and roll = 10◦; pitch = 10◦, yaw = 20◦

Table II shows the five estimated random values of the
position and orientation for test 2, and its computation time.
In all the cases the real values were obtained.

TABLE II

Est. position (x,y,z) Est. Orientation (ψ, θ, φ) Computation Time (sec)

[10,−20, 30] [0, 20,−10] 0.005378

[50,−20, 60] [0,−20, 50] 0.01111

[−20, 30, 70] [40, 50, 50] 0.02328

[0,−20, 30] [−10,−20,−30] 0.06947

[40, 0, 70] [0, 0, 0] 0.01149

Fig. 8 shows the real configuration and the five positions
and orientations that were estimated.

Real posture Estimation 1

Estimation 2 Estimation 3

Estimation 4 Estimation 5

Fig. 8. Postures for Test 2. The real one and the initial estimations.

V. CONCLUSIONS AND DISCUSSIONS

In this paper a new methodology to deal with the forward
kinematic of a general Stewart-Gough platform was presented.
The Analysis consists in a multibody formulation and a con-
straint function. Then, an estimated position and orientation
is iteratively corrected with the Newton - Rhapson numerical
method, obtaining a quick and unique solution for the forward
kinematics problem.
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In general, from the results obtained, we can conclude that
the method presented provides an interesting alternative for
numerically solving the forward kinematics of a parallel robot.

Furthermore, to validate the methodology proposed in this
paper, a design of a simulator using MATLAB was presented.
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