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Abstract: Objective: In this article, we present the conceptual development of a robotics platform,
called ALICE (Assistive Lower Limb Controlled Exoskeleton), for kinetic and kinematic gait
characterization. The ALICE platform includes a robotics wearable exoskeleton and an on-board
muscle driven simulator to estimate the user’s kinetic parameters. Background: Even when the
kinematics patterns of the human gait are well studied and reported in the literature, there exists a
considerable intra-subject variability in the kinetics of the movements. ALICE aims to be an advanced
mechanical sensor that allows us to compute real-time information of both kinetic and kinematic
data, opening up a new personalized rehabilitation concept. Methodology: We developed a full
muscle driven simulator in an open source environment and validated it with real gait data obtained
from patients diagnosed with multiple sclerosis. After that, we designed, modeled, and controlled
a 6 DoF lower limb exoskeleton with inertial measurement units and a position/velocity sensor in
each actuator. Significance: This novel concept aims to become a tool for improving the diagnosis of
pathological gait and to design personalized robotics rehabilitation therapies. Conclusion: ALICE
is the first robotics platform automatically adapted to the kinetic and kinematic gait parameters of
each patient.

Keywords: adaptive control; exoskeleton robot; muscle driven simulator; quaternions; rehabilitation

1. Introduction

Robotics exoskeletons are a technology in continuous development mainly in the medical and
military fields. Considering the medical domain, both upper and lower limb exoskeletons obey two
paradigms: rehabilitation and augmentation. There is a clear conceptual difference between them. The
rehabilitation exoskeletons are designed to follow a specific therapy/treatment. It is assumed that
patients are going to enhance their mobility in the rehabilitation therapy. This robot must be useful for
a wide range of patients considering weight, height, gender, and disease, among others. Moreover,
mechanical parameters, on-board sensors, and the software and hardware architecture are expected to
be flexible enough in order to adapt the device to each particular patient.

However, in an augmentation robotics exoskeleton, it is assumed that patients are not going to
improve their mobility after undergoing therapy because there is a permanent degree of disability.
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Such cases need a personalized device that enhances the patient’s abilities and improves his/her
quality of life as much as possible.

In this last case, we have an additional consideration. Patients diagnosed with a degenerative
disease such as multiple sclerosis have also cognitive impairment, then it is necessary to endow robots
with enough knowledge to automatically adapt to each situation.

In the last two decades, the interest in this particular application of robots has been increasing
because it arises as a cost/effective solution for the increasing demand of the traditional rehabilitation
system. Rehabilitation therapy with robots ensures a greater number of repetitive movements
than manual rehabilitation. As a consequence, the natural proprioceptive input coming from limb
movements stimulates the brain and spinal cord neuroplasticity, which is the key for restoring the
mobility of the affected limb(s) in cases of some neuromuscular disorders [1].

An example is the well known application ALEXproject from Delaware University with at least
three versions of lower limb exoskeletons [2–4]. All versions are focused on kinematic control of the
gait, where joint forces, as well as visual and audio signals are fed back to the control loop in order
to minimize the errors in a trajectory. Other examples with the same concept are LOPES [5–7] or
MLLRE [8]. The reader is refereed to the literature for a deep review of mobile and stationary lower
limb exoskeletons [9–14].

In rehabilitation, the main goal is to restore the movements as much as possible. In contrast,
in augmentation, the goal is to delay the onset of the most severe symptoms. However, in both
cases, kinematic and kinetic parameters must be considered in the robot control loop. Most advanced
control strategies consider the patients’ internal muscle forces measured by electromyography sensors.
Others prototypes also include electrical nerve signals from the spine or limbs to generate appropriate
activation signals for actuators. Finally, the last generation of robotic exoskeletons are those that use
directly the brain signal to activate the robot using the potential movement intention.

In this paper, we present the conceptual design of a robotic exoskeleton platform, ALICE, with both
capabilities: rehabilitation and augmentation. Kinetic and kinematic data are measured or estimated
for both the patient and robot. These data are fed back to the control loop in order to restore or maintain
a particular movement. By merging these data into a real-time adaptive PDcontrol architecture, we
ensure automatically adapting the therapy to the personal condition of the patients. The robot’s
kinematic data are measured by its internal sensors, while the kinematic data of patients’ limb are
measured by inertial unit sensors placed on the limb. Kinetic data are computed or simulated: we use
the dynamical model of the robot to compute the joints/torque forces in order to control its trajectory
while the patient’s kinetic data are estimated by a validated full bio-mechanical simulator running
on-board [15]. This novel concept turns ALICE into a sensor–motor robotic exoskeleton suitable
for personalized gait analysis. Moreover, it can be used as an augmentation robot for permanently
disabled people or patients with multiple sclerosis disease to contribute with the torques required
when the patient loses his/her mobility.

Figure 1 shows the ALICE concept. Because an exoskeleton is a wearable device, it could be
assumed that the kinematic data of the patient’s gait are computed through the internal sensors of the
robots in addition to the inertial unit sensors placed on the patient’s limbs. However, this hypothesis is
not valid for kinetics data. The robot’s forces are computed by its dynamical model, while the gait’s
kinetic data are computed by the musculoskeletal model using the information given by external
EMG sensors. The capabilities included in this platform turns ALICE into the first robotics device
able to be used for diagnosis. At the same time, this robotics mechanism can be used to perform
repetitive rehabilitation tasks; therefore, data (measured and/or estimated) are the feedback in the
control architecture.

This article is organized as follow. In Section 2, the ALICE project is presented. In Section 3, the
kinematics and dynamics modeling is described. In Section 4, the gait kinetics is analyzed, and the
musculoskeletal model, as well as, the gait capture wireless system are presented. Section 5 presents
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the control strategy proposed based on a PD adaptive controller that includes the kinetic data of
the patient.
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Figure 1. ALICE concept.

2. Brief Description of the ALICE Project

Over the last 15 years, research in the field of rehabilitation robotics has grown exponentially,
as shown in [16–18]. The mismatch between increasing demand of rehabilitation services and the
available resources to cover it is one of the leading causes. As a consequence, rehabilitation sessions’
length reduces from typically 45 min to 30 min, as the wait list exceeds the recommended time.
Moreover, most part of rehabilitation therapies are carried out “one-by-one”, and the workload on
physiotherapists is very high. Physiotherapists cannot meet the demand and, in some cases, end up
becoming patients due to the physical overload to which they are exposed [19].

The main goal of the ALICE project is to provide rehabilitation medical staff with a tool that
helps in the rehabilitation process while simultaneously reducing their workload. At the same time,
ALICE is an advanced sensor that provides all necessary information about the patient’s movements
and improves the diagnosis and prognosis of a particular injury. ALICE is a three link lower limb
rehabilitation exoskeleton (hip, femur, and tibia) and includes three electric actuators. The first version
of ALICE included four degrees of freedom (DoF) and three active actions (flexion/extension of the
hip, abduction/adduction of the hip, and flexion/extension of the knee). The dorsal/plantar flexion
of the ankle is a passive DoF, and it could be considered as the limitation of this study. Therefore,
the range of usability of this device is restricted to those injuries where active action in this joint is
not required.

2.1. Mechanical Design

From the mechanical point of view, ALICE is adjustable for adult patients with femur and tibia
lengths between 35 and 50 cm and a pelvic width from 29 to 40 cm. In addition, it is designed to assist
in the gait pattern’s diagnosis, as well as to measure the patient’s recovery in the gait rehabilitation
objectively. Furthermore, ALICE could be used in patients who have suffered some neuro-muscle
disorders with the limitation stated before.

Currently, the project is in the process of validating components/subsystems and performing
laboratory tests and simulations in a real environment. ALICE has an average level of technological
maturity (TRL) (level of technological preparation, NASA) of 5.

The major drawbacks to extend the use of this advanced technology lie in (a) economic aspects, as
robotic exoskeletons are still expensive, (b) the credibility and acceptability gap in both rehabilitation
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staff and patients, and (c) the regulatory requirements because being a diagnosis and a rehabilitation
machine, it is forced to undergo the necessary clinical trials. Every step further in the TRL scale of
ALICE’s project keeps in mind these three key points.

ALICE has a support that can be adhered to the pelvis and two adjustable elements that adapt to
the leg and tibia, respectively, as shown in Figure 2.

Figure 2. CAD of the exoskeleton robot for rehabilitation, ALICE.

For each lower limb member, there is a mechanism with three active joints and one passive
joint. The first active joint corresponds to flexion/extension of the hip, the second active joint to
abduction/adduction of the hip, and the third active joint to flexion/extension of the knee. Finally, the
degree of passive freedom corresponds to the ankle that allows dorsal and plantar flexion.

The range of mobility of each joint is restricted to the values found in the literature [20–22], and
are shown in Table 1. Thus, the workspace and dexterity of the mechanism is strongly constrained by
the range of work of the joints.

Table 1. Joints and Range of Motion (ROM).

Joint Action ROM

Hip
Extension/Flexion −30◦/120◦

Abduction/Adduction −50◦/30◦

Knee Flexion/Extension −120◦/0◦

Ankle Plantar/Dorsal Flexion −40◦/30◦

In order to select the actuators, patient’s weight was added to the CAD model (considering a
maximum weight of 135 kg) and then exported to Simulink R©. The equivalent Simulink R© model
allows evaluating the needed torques for a pure movement and integrating all the MATLAB R© and
Simulink R© features. Figure 3 depicts the equivalent Simulink R© model.
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Left leg

Right leg

Figure 3. ALICE, Simulink R©, Simscape MultibodyTM equivalent model.

Once the model was exported, activation signals for normal gait were set as reference joint’s
angles, and the required torque was determined. Figure 4 shows the joint’s angles of reference and the
torque predicted for this reference value.

Figure 4. Joint’s angles for a gait cycle and the joint’s required torque.

Figure 4 shows that the maximum torque required for hip flexion/extension, hip
abduction/adduction, and knee flexion/extension for a gait cycle was around 38, 21 and 32 N·m,
respectively. Moreover, for pure movements, the flexion/extension, hip abduction/adduction, and
knee flexion/extension for a gait cycle were around 42, 23 and 20 N·m, respectively.

For actuators’ selection, the catalogs from Maxon motors and Harmonic Drive were considered
because these catalogs show a wide variety of combinations of their products, i.e., motors, gear boxes,
drivers, and encoders integrated. According to the maximum values obtained in the simulation, the
suitable motors are the Maxon EC Flat 90 series and the Harmonic Drive Cobalt Line 17, 100 CPM,
obtaining an average torque of 51 N·m. Furthermore, the control board recommended is the EPOS2
70/10 digital position controller.

3. Kinematics and Dynamics Modeling

For the kinematic analysis, the unit quaternions’ theory was used due to its simple and compact
mathematical representation compared to other methods, such as the Denavit–Hartenberg (DH)
method [23–25]. However, starting from the reference frames defined by the DH methods and then
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applying on the transformation matrix the properties and operation defined for the unit quaternions,
it is possible to get linear and angular velocities straightforwardly (see Figure 5).

Figure 5. Reference frames using Denavit–Hartenberg (DH) representation.

3.1. Transformation Matrices

Let us consider the following unit quaternion:

b = b0 + b1i + b2 j + b3k (1)

The transformation matrix is given by:

Ti−1
i =

[
Ri−1

i Pi−1
i

0 1

]
(2)

where Ri−1
i ∈ <3×3 is the rotation matrix and Pi−1

i is the translation vector. The rotation matrix in
terms of unit quaternions can be obtained by rotating an angle θi around the z axis and an angle αi
around the x axis.

Thus, defining the vector zi:
zi = cos(θi) + sin(θi).k (3)

The rotation around z will be given by:

zRi−1
i =

[
zi ⊗ dx, zi ⊗ dy, dz

]
(4)

where dx = i, dy = j and dz = k. Moreover, a rotation of an angle αi around the x axis yields,

xi = cos(αi) + sin(αi).i (5)

Therefore, the rotation around x will be given by:

xRi−1
i =

[
dx, xi ⊗ dy, xi ⊗ dz

]
(6)
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On the other hand, the translations matrices in the z and x axes are given by:

zPi−1
i =

 0
0
si

 xPi−1
i =

 ai
0
0

 (7)

The rotation and translation matrices are used to define the global transformation matrix necessary
to obtain the kinematics of the exoskeleton following the DH method.

Furthermore, the translations in the z and x matrices are given in (8) and the transformation
matrices in (9):

Si−1
i =

[
I zPi−1

i
0 1

]
Ai−1

i =

[
I xPi−1

i
0 1

]
(8)

Ti−1
i =

[
zRi−1

i 0
0 1

]
Si−1

i Ai−1
i

[
xRi−1

i 0
0 1

]
(9)

where I is an identity matrix. Therefore, the transformation matrix of the exoskeleton is given by:

T0
3 = T0

1 T1
2 T2

3 (10)

3.2. Speed Matrices

In order to obtain the angular velocities, it is necessary to define both the linear and angular
coordinates as expressed in [26]. Consider the following linear coordinate vector X = [x, y, z]T and the
linear velocities with respect to the origin:

Ẋ0
1 = Ṗ0

1 Ẋ0
2 = Ṗ0

2 Ẋ0
3 = Ṗ0

3 (11)

Furthermore, consider the angles of the exoskeleton joints q = [q1, q2, q3]
T on the z axis with the

rotation angles Φ = [θ, φ, ψ]T . Therefore, the angular velocities with respect to the base axis are given
by [26]:

ω0
1 = Φ̇0

1 = q̇1k

ω0
2 = Φ̇0

2 = q̇1k + q̇2R0
1k

ω0
3 = Φ̇0

3 = q̇1k + q̇2R0
1k + q̇3R0

2k (12)

Defining the vector k = [0, 0, 1]T , the expressions given in (12) can be written in matrix form:

W1 = [k, 0, 0] W2 =
[
k, R0

1k, 0
]

W3 =
[
k, R0

1k, R0
2k
]

(13)

Finally, the Wi matrices for i = 1, 2, 3 give an important relationship since the velocity in all axes
can be obtained from the angular velocities of each actuated joint:

ω0
i = Wi q̇ (14)

3.3. Dynamic Modeling

To obtain the exoskeleton dynamics, the Euler–Lagrange method is implemented by first defining
the Lagrangian as shown below,

L =
3

∑
i=1

Ki −
3

∑
i=1

Pi (15)
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where Ki is the kinetic energy and Pi is the potential energy for links i = 1, 2, 3. In (16), each term of
the previous equation is defined.

K =
1
2

3

∑
i=1

ẊT
i MiẊi +

1
2

3

∑
i=1

ωT
i Iiωi

P =
3

∑
i=1

migXT
i Dy (16)

where Dy = [0, 1, 0]T , Xi, and ωi are defined in (11) and (12), and the Mi matrix is given by,

Mi =

 mi 0 0
0 mi 0
0 0 0

 (17)

where mi is the mass for link i = 1, 2, 3, Ii ∈ <3 is the inertia matrix for links i = 1, 2, 3, and g is the
gravity constant. Making a change of variables, the Lagrangian becomes L = 1

2
˙̄XT M ˙̄X + 1

2 ΩT IΩ−
X̄T D′y, where,

X̄ = [X1, X2, X3]
T Ω = [ω1, ω2, ω3]

T

Ω =
[
Φ̇1, Φ̇2, Φ̇3

]T Φ = [Φ1, Φ2, Φ3]
T (18)

and:

M =

 M1 0 0
0 M2 0
0 0 M3

 I =

 I1 0 0
0 I2 0
0 0 I3


D′y =

 Dym1g
Dym2g
Dym3g

 (19)

Next, making the following change of variables:

Q =
[
X̄T , ΦT]T Q̇ =

[
˙̄XT , Φ̇T

]T
=
[

˙̄XT , ΩT
]T

Q̈ =
[

¨̄X, Φ̈T
]T

=
[

¨̄XT , Ω̇T
]T

(20)

we have:

L =
1
2

Q̇T

[
M 0
0 I

]
Q̇−QT

[
D′y
0

]
(21)

Finally, applying the Euler–Lagrange equation given by,

d
dt

[
∂L
∂Q̇

]
− ∂L

∂Q
= τQ (22)

where τQ =
[
03, τT

Φ
]T . The exoskeleton dynamics equation is:
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[
M 0
0 I

] [
¨̄X

Ω̇

]
+ DQ =

[
0

τΦ

]
(23)

where DQ =
[

DT′
y , 0

]T
.

Using the virtual torque τqn, it is possible to define a transformation τΦn to implement the input
of each exoskeleton actuator. Thus, let us consider the following equation,

Inω̇n = τΦn

In
[
Ẇn q̇ + Wn q̈

]
= τΦn (24)

ω̇ can be obtained from the first derivative of (14); thus, the expression given by (24) can be rewritten as,

Dn q̈ + Cn q̇ = τΦn (25)

where Dn = InWn and Cn = InẆn. Multiplying both sides of (25) by D−1
n yields:

q̈ + D−1
n Cn q̇ = D−1

n τΦn (26)

Furthermore, to transform the forces and moments of the exoskeleton links to the actuator torques
for n = 3, the τΦn → τqn transformation given by τqn = D−1

n τΦn is required.

4. Kinetic Gait Modeling

A full musculoskeletal model for muscle driven simulation was included in our platform to
compute internal muscle force data from patients. The model was created using an open source
software called MSMS and exported to the MATLAB environment, which is based on the well known
biomechanical model of Hill–Zajac [27–29]. In spite of this, the insertion of each bone, muscle, tendon,
and ligaments was done manually by the authors. Fourteen bones, 88 Hill-type muscle–tendon
segments, 10 ligament segments for each knee, and 6 joints for each lower limb were modeled [15].
The muscle–tendon parameters were based on those reported by Cardona et al. [15], Arnold et al. [22],
Ward at al. [30], and Rajagopal at al. [31].

The muscle–tendon parameters used in our simulator were reported in [30]. Here, a
post-mortem analysis was performed to 21 cadavers with a weight and height of 82.7 ± 15.2 kg
and 168.4 ± 9.3 cm, respectively. The musculoskeletal model is depicted in Figure 6, and Table 2 shows
the morphometric parameters.

After that, the biomechanical model was exported to Simulink to merge simulated data with
external data measured by IMUs and EMG sensors if needed. The Simulink model was composed
by a drivers block with the muscle–tendons features (morphometry, fiber type, and muscle path) in
which the muscle signals were set, a block representing the bone segments (SimMechanics block), an
UDP block to send the signals to MSMS, and a block that generated a file (“.msm”) used by MSMS
as a source animation file. Figure 7 shows the Simulink equivalent block diagram and its relation
with MSMS.

The patient gait was registered and then included in the control loop (Figure 8). The inertial
sensors used were wireless with nine axes: each module consisted of a high precision three axis
gyroscope, three axis accelerometer, three axis geomagnetic sensor, and a 32 bit high performance
MCU. According to the manufacturer, the IMU allowed us to have an output rate up to 200 Hz and an
accuracy of 0.05◦.
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a) b)

c)

Figure 6. Musculoskeletal model of the lower limb. (a) Full model with the 44 Hill-type muscle tendon
units. (b) Example of two wrapping objects to constrain the muscle–tendon path. (c) Ligaments of the
right knee.
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Figure 7. Simulink block model and MSMS integration.

Figure 8. Wireless gait caption system [32].
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Table 2. Morphometrics values of the model [15].

Muscle Segment
Optimal
Fascicle

Length (cm)

Optimal
Tendon Length

(cm)

Max. MT
Length

(cm)
Mass (g) PCSA(cm2)

Max. Force
(N)

Adductor brevis 10.30 3.60 16.68 104.3715 9.55958 303.994
Adductor longus 10.82 13.00 28.58 144.0863 12.5628 399.499
Adductor mag.distal 17.72 9.00 32.06 191.49 10.1949 324.2
Adductor mag. ischial 15.62 22.1 45.26 168.8 10.1949 324.2
Adductor mag. middle 13.77 4.8 22.8 148.8078 10.1949 324.2
Adductor mag. proximal 10.56 4.3 17.83 114.1184 10.1949 324.2
Biceps femoris long head 9.76 32.2 50.35 229.425 22.1761 705.2
Biceps femoris short head 11.03 10.4 25.72 116.1091 9.9308 315.8
Extensor digitorum long. 6.93 36.73 52.39 79.7874 10.8616 345.4
Extensor hallucis longus 7.48 33.15 48.76 41.14 5.1886 165
Flexor digitorum longus 4.46 37.77 50.68 40.794 8.6289 2274.4
Flexor hallucis longus 5.27 35.6 49.04 76.7312 13.7358 436.8
Gastrocnemius lateral 5.88 38.2 52.90 118.854 19.069 606.4
Gastrocnemius medial 5.1 40.08 54.22 222.359 41.132 1308
Gemelli 2.4 3.9 7.56 8.72 3.4276 109
Gluteus max. superior 14.73 5.0 23.68 268.135 17.1729 546.1
Gluteus maximus middle 15.69 7.33 27.62 408.2015 24.544 780.5
Gluteus maximus inferior 16.65 7.02 28.40 291.9855 16.544 526.1
Gluteus medius anterior 7.33 5.65 15.58 215.2821 27.707 881.099
Gluteus medius middle 7.33 6.6 16.72 150.6315 19.3867 616.5
Gluteus medius posterior 7.33 4.6 14.32 171.522 22.075 702
Gluteus min.anterior 6.8 1.6 10.08 40.8 5.6603 180
Gluteus min. middle 5.6 2.6 9.84 35.466 5.9748 190
Gluteus min. posterior 3.8 5.1 10.68 27.23 6.761 215
Gracilis 22.78 16.6 47.26 104.256 4.3176 137.3
Iliacus 10.66 9.4 24.07 220.98 19.556 621.9
Patellar tendon 5.0 0.5 6.6 0.1666 0.03144 1.0
Pectineus 13.3 0.1 16.08 78.47 5.566 177
Peroneus brevis 4.54 14.81 23.22 46.2928 9.619 305.9
Peroneus longus 5.08 33.3 46.06 110.6254 20.544 653.299
Peroneus tertius 7.9 10.0 21.48 23.7 2.83 90
Piriformis 2.6 11.5 16.92 25.6533 9.308 296
Psoas 11.69 9.7 25.67 186.923 15.0849 479.7
Quadratus femoris 5.4 2.4 9.36 45.72 7.9874 253.99
Rectus femoris 7.59 34.6 50.63 214.746 26.691 848.8
Sartorius 40.3 11.0 61.56 152.468 3.569 113.5
Semimembranosus 6.9 34.8 50.04 267.421 36.562 1162.7
Semitendinosus 19.3 24.5 52.56 194.2 9.4937 301.9
Soleus 4.4 28.15 39.06 525.93 112.76 3585.899
Tensor fascia latae 9.5 45 65.4 49.083 4.874 155
Tibialis anterior 6.83 24.1 37.12 153.379 21.1855 673.7
Tibialis posterior 3.78 28.18 38.35 114.1055 28.4779 905.599
Vastus intermedius 9.93 10.6 24.64 339.0102 32.2075 1024.2
Vastus lateralis 9.94 13.0 27.53 747.289 70.9245 2255.4
Vastus medialis 9.68 11.2 25.06 465.833 45.399 1443.7

5. ALICE Control Architecture

The literature reports several control strategies for lower limb robotics exoskeletons, from the
simplest PD to advanced controllers like the sliding adaptive controllers [14,33–37]. One of the most
important problems to solve is approximating the tracking error to zero when a torque disturbance
is found in the system. In the case of gait rehabilitation, each patient, disease, or treatment is
different; then, the control strategy must be automatic or easy to adapt to each situation. ALICE
is a unique robotic exoskeleton that uses the on-board musculoskeletal model to adapt the control
signal automatically to the patient’s particular condition. An adaptive PD controller was designed
using internal and external sensors (for the robot and patient) and data computed from the models.
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5.1. Adaptive-PD Controller

Figure 9 presents the control law used in this project. In this section, we will design the controller
using Lyapunov’s theory.

Therapy reference

             values

PD Adaptive

   controller

Adaptive Law

Musculoskeletal simulator

Robot dynamic

         model

Control Unit

θp, θp, τp
•

θr, θr, τr
•

θr, θr
•

Figure 9. Control concept, adaptive PDcontroller.

In this controller, the kinetics of patient’s movements was considered as a disturbance input
torque, then it was added to (25),

Dn q̈ + Cn q̇ = τΦn + τdn (27)

where τdn is the disturbance torque. Multiplying D−1
n on both sides of (27), we obtain:

q̈ + D−1
n Cn q̇ = D−1

n τΦn + D−1
n τdn (28)

considering the virtual input and disturbance torques as τqn = D−1
n τΦn and τqd = D−1

n τdn, respectively.
In order to design the adaptive PD controller, it is necessary to convert (28) to state variables by

means of the variables z1 = q and z2 = q̇, that is:

ż1 = z2

ż2 = τqn + τqd − D−1
n Cnz2 (29)

Thus, the PD adaptive controller is given by:

τqn = K1e1 + K2e2 (30)

where e1 = qr − q = z1r − z1 and e2 = q̇r − q̇ = z2r − z2. Moreover, qr = z1r is the reference
vector, q̇r = z2r the reference vector derivative, and K1 and K2 the proportional and derivative
gain, respectively.

In order to obtain the adaptive control laws and ensure that the errors e1 → 0 and e2 → 0 when
the time approaches infinity, it is necessary to define the following dynamics of the error,
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ė1 = ż1r − ż1 = ż1r − z2

ė2 = ż2r − ż2 = ż2r − τqn − τqd + D−1
n Cnz2 (31)

substituting τqn into (31), we obtain:

ė1 = ż1r − z2

ė2 = ż2r − K1e1 − K2e2 − τqd + D−1
n Cnz2 (32)

The following property is necessary in order to obtain the adaptive law by the Lyapunov method,
considering that the disturbance torque norm τqd has an upper limit.

Property 1. The disturbance torque norm τqd has the following upper limit:

‖τqd‖ < δ (33)

for δ > 0.

Moreover, to find the adaptive control law, it is necessary to define the following
Lyapunov function:

V =
1
2

eT
1 e1 +

1
2

eT
2 e2 +

1
2

K2
1 +

1
2

K2
2 (34)

taking the derivative of Equation (34), we obtain:

V̇ = eT
1 [ż1r − z2]

+ eT
2

[
ż2r − K1e1 − K2e2 − τqd + D−1

n Cnz2

]
+ K1K̇1 + K2K̇2 (35)

Substituting the following adaptive law in (35):

K̇1 =
−1
K1

[
K1eT

1 ż1r − K1eT
1 z2 − eT

2 K2
1e1

]
K̇2 =

−1
K2

[
K2eT

2 z2r − eT
2 K2

2e2 + K2eT
2 D−1

n Cnz2

]
(36)

yields,

V̇ = −eT
2 τqd (37)

Thus, applying the norm to both sides of (37) and implementing the Property 1, we obtain,

V̇ ≤ −δ‖eT
2 ‖ (38)

From this result, it is proven that adaptive laws (36) ensure the closed loop stability of the
exoskeleton for the respective trajectory tracking.
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6. Simulation Results with Real Data

The design process of a robotics rehabilitation system is complex, and testing it with patients in
a real clinical environment requires the approval of legal authorities and accomplishing at least safe
regulatory issues. This proposal is in TRL 4–5. and it is far from real testing in the clinical environment.
However, it is necessary to validate each new step of the development with the greatest possible level
of reliability. Therefore, for the simulation results, we used real gait data captured with commercial
medical equipment, CODATM Motion Analysis System, from a patient with multiple sclerosis at the
Physiotherapy Clinic of the ONCE Foundation.

Figure 10 shows the simulation scheme to obtain the therapy reference values. These trajectories
were sent as reference signals to the control system. Data used in the simulation of proposed control
law were collected from four patients diagnosed with multiple sclerosis, which is a neuro-degenerative
disease with a high variability among patients, and a healthy volunteer. All subjects were in the same
range of age, height, and weight, as shown in Table 3.

       Movement Data .mdf

    Therapy reference values

CODA Markers’

Markers’ Position

  (Joint’s Angle)

Markers

   Force

Platform

       Simulation Data .mdx

     Spatio-temporal values

CODA Motion Software

Figure 10. Simulation scheme in CODA motion software to obtain therapy reference values.

Table 3. Patients’ anthropometric data.

Patient Age Height (cm) Weight (kg) Pelvic Width (cm) Femur Length (cm) Tibia Length (cm)

1 49 1.57 60 34 37 36
2 47 1.63 58 33 39 37
3 52 1.68 68 34 40 39
4 47 1.62 62 35 39 38

Most relevant mechanical parameters of the robot such as length and mass parameters are defined
in Table 4, while inertia matrices are shown in Equation (39). The values of ALICE’s links were
determined from the anthropometric data shown in [38,39].

The movements of hip abduction/adduction, hip flexion/extension, and knee flexion/extension
angles for these subjects are shown in Figures 11–13, respectively. The figures also include the gait
pattern after applying the PD adaptive controller. In this simulation, we assumed all patients had the
same references values; however, in a real rehabilitation process, reference values are established by
medical staff taking into account the particular condition of their patient.
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Table 4. ALICE length and mass values.

Parameter Value

l1 0.115 m
l2 0.160 m
l3 0.400 m
l4 0.400 m

m1 1.18 kg
m2 13.228 kg
m3 5.594 kg

I1 =

 0.004977351 0 0
0 0.004835199 0
0 0 0.001191692


I2 =

 0.009337758 0 0
0 0.166430481 0
0 0 0.169652773


I3 =

 0.019400497 0 0
0 0.135966856 0
0 0 0.146655675

 (39)
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Figure 11. Hip abduction/adduction angles for a normal subject (reference signal) and four subjects
with multiple sclerosis for both open loop and using the PD adaptive controller.
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Figure 12. Hip flexion/extension angles for a normal subject (reference signal) and four subjects with
multiple sclerosis for both open loop and using the PD adaptive controller.

The numerical simulation showed how the tracking error of each joint approached zero as time
approximated two seconds. It is important to mention that the adaptive PD controller, in opposition to
other approaches found in the literature, provided a robust control approach in the presence of external
disturbances. These external disturbances were generated by the gait of an unhealthy patient, which
affected the torque yielded by the actuators. These kinds of disturbances of courses are considered
bounded because the unhealthy patient disturbance trajectory is known a priori. This condition is
established theoretically, and the PD adaptive laws are designed by an appropriate Lyapunov approach.
It can be noticed in Figures 11–13 that the trajectory was tracked accurately by implementing the
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proposed controller despite the external disturbance yielded by an unhealthy patient. In opposition,
as a standard PD controller, the adjustment of the PD controller gains improved the closed loop
performance even when disturbance could drive the system variables, which in this case were the
actuator joints, to instability in unexpected conditions.
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Figure 13. Knee flexion/extension angles for a normal subject (reference signal) and four subjects with
multiple sclerosis for both open loop and using the PD adaptive controller.

7. Discussion

The rehabilitation services either in public or private health systems are overloaded due to the
effect of population aging and the rise in incidence of strokes, especially in women. In such cases,
restoring the patient to his/her normal life would depend, among other factors, on the quality of
rehabilitation: onset, duration, and frequency of therapy. Rehabilitation robots arise as a potential
solution to solve some of these daily problems in the rehabilitation services.

Certainly, many efforts have been made in the research and development of rehabilitation robots,
yet the solution continues to be far from being used in clinical practices. As we mentioned before, the
economic cost of the technology constitutes an important barrier to its massive scale-up.

In this article, we presented the ALICE project. The system is a mechatronics development
leading to assisting rehabilitation staff in the entire procedure of the diagnosis and rehabilitation of
the pathological gait. ALICE is able to give information about both the kinematics and kinetics of the
patient’s movements in real time.

The kinematic information is available in almost all commercial and research exoskeletons and is
used to control the robot during the gait cycle. The kinematics of lower limb is widely studied and
described in the literature [40–43].

In ALICE, we used a hybrid approach by combing both data measured by sensors and data
computed by models. Moreover, we assumed that the robot was attached to the patient’s lower limb
where inertial measurement units (IMUs) were localized. Furthermore, in this paper, we describe
the kinematic model of the designed robotic mechanism. The model was developed under the unit
quaternion theory, which is one of the most powerful tools for computing in real time.

Regarding kinetic data, they are not easy to obtain. Each person has his/her own inherent pattern
for walking, using different postural, neuromuscular, locomotor, and dynamic balance control. Some
studies [44–46] showed there were different patterns for healthy people and many others differed
under some pathological condition. Moreover, these patterns depended on external parameters such
as velocity and contact surfaces.

ALICE project advances the state-of-the-art in kinetic computing of the human gait by using
an on-board musculoskeletal simulator to obtain the forces of internal muscles. Despite the forces
of external muscle being easily measured by non-invasive electromyography technology (EMG),
the internal muscle forces could be measured only by an invasive technique called Needle EMG.
It potentially produces iatrogenic effects such as bleeding (a little bleeding is the rule), hematoma,
infection, and pneumothorax [47,48]. Our proposal brings out a full lower limb musculoskeletal model
running on-board and computing the internal forces of the movement without invasion. The reader is
referred to [15] for details.
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An adaptive PD controller was designed to close the loop. We chose this control architecture
because once the stable locomotion is ensured, the controller parameters take into consideration the
personal condition of the patient. According to the obtained results, it was observed that the adaptive
PD controller provided a very good dynamic response, generating an accurate track of the trajectory
for patients with multiple sclerosis. In addition, it can be seen that the actuators q1 = θ1 and q3 = θ3

reduced the error when the time approached 1 s. In the case of the actuator q2 = θ2, the error was
reduced when the time approached 2 s, which verified the effectiveness of the adaptive PD controller.

In addition, it is important to point out that while the results obtained from this experiment were
acceptable, these could be improved in the future by testing them with a sliding mode controller or a
robust controller.

7.1. Robotics Devices in the New European Regulatory Context

In this article, a conceptual design of a complex sensor to measure/estimate human gait
parameters is presented, including a lower limb robot that can also assist in the gait cycle. ALICE
aims to be a medical device suitable for clinical practice, then its validation must be carried out in that
environment, with a specific medical protocol. A validation in a different environment would not be a
realistic validation of the device.

Until now, the authorization of hospital ethical committees was enough to perform a first clinical
validation in order to improve and test the device. However, in the new European regulatory
framework (deadline May 2020), it is required for any clinical validation involving humans to be
explicitly authorized by the government’s medical agencies.

This validation already requires a quasi-commercial product, for example: user manual, risk
analysis, pre-manufacturing process, payment of insurance for each enrolled patient, pre-clinical trial
approved (certification for electrical and electromagnetic compatibility, RoHS, machine tool regulatory,
etc). Therefore, reducing the gap between lab and clinical practice will be more difficult than before.

8. Conclusions

In this article, a novel concept for a robotic exoskeleton was described. The main innovation of
our project lied in the kinetic and kinematic data from both the robot and patient, which were included
in the control loop, making ALICE a novel sensor useful for diagnosis, rehabilitation, and objective
quantification of the therapy progress.

Using Hamilton quaternions, a dynamic analysis was performed through the Euler–Lagrange
formulation and expressed in state variables. Furthermore, a full musculoskeletal model was presented
including 14 bone segments, 88 muscle–tendon units, 20 knee ligaments, and 12 joints, which allowed
simulating the kinetic data of the patient.

An adaptive PD controller architecture was evaluated in order to personalize the therapy to each
patient and to improve his/her gait as much as possible. The test data were taken from our own
wireless gait capture system for healthy volunteers and patients diagnosed with multiple sclerosis
disease. All information, sensor data, and information provided by the models are available for
medical staff.

The next step in our development is to reach TRL 6, where an exoskeleton will be prototyped
using the power and control electronics, as well as electrical actuators selected in the analysis presented
is this paper. This advance in TRL will allow validating the hardware component, ergonomic aspects,
control strategies, and measurement capabilities of the proposed platform.
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