CPU12

Reference Manual

Digital DNA

from Motorola

CPU12

Reference Manual

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Motorola data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for
each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola and @ are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2000

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA 3

Reference Manual

Reference Manual CPU12 — Rev. 2.0

4 MOTOROLA

Reference Manual — CPU12

CPU12 — Rev. 2.0

List of Sections

Section 1. Introduction........... 21
Section 2. OVerVIeWttt 27
Section 3. AddressingModes 37
Section 4. Instruction Queue 55
Section 5. Instruction Set Overview 63
Section 6. Instruction Glossary 97
Section 7. Exception Processing. 323
Section 8. Development and Debug Support........ 335
Section 9. Fuzzy Logic Support. 355
Section 10. Memory Expansion................... 395
Appendix A. Instruction Reference................ 407

Appendix B. M6BHC11 to M68HC12

Upgrade Path.................... 441
Appendix C. High-Level Language Support......... 465
INdeX. ..o 473

Reference Manual

MOTOROLA

List of Sections 5

List of Sections

Reference Manual CPU12 — Rev. 2.0

6 List of Sections MOTOROLA

Reference Manual — CPU12

CPU12 — Rev. 2.0

11
1.2
13
14

15

151
152
153
154

2.1
2.2

2.3
23.1
2.3.2
2.3.3
23.4
2.3.5
23.5.1
2.3.5.2
2.3.5.3
2354
2.3.5.5
2.3.5.6
2.3.5.7
2.3.5.8

Table of Contents

Section 1. Introduction

Contents 21
Introduction. 21
Features 21
Readership. i 22
Symbols and Notation. 23
Abbreviations for System Resources. 23
Memory and Addressing 24
Operators 25
Definitions. 26

Contents e 27
Introduction. 27
Programming Model 28
Accumulators 29
Index Registers i 29
Stack Pointer e 29
Program Counter i 30
Condition Code Reqister 30
SControl Bit. e 31
XMaskBit 32
HStatus Bit 32
IMask Bit. 33
NStatus Bit 33
ZStatus Bit ... 33
VStatus Bit 34
CStatus Bit e 34

Reference Manual

MOTOROLA

Table of Contents 7

Table of Contents

Reference Manual

2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.10.1
3.10.2
3.10.3
3.10.4
3.10.5

3.10.6
3.10.7

3.11
3.11.1
3.11.2

3.12

4.1
4.2
4.3

Data TypeS . .. o 34
Memory Organization.t 35
Instruction QUeUe 35

Section 3. Addressing Modes

Contents 37
Introduction. 37
Mode Summary 38
Effective Address 39
Inherent AddressingMode 39
Immediate AddressingMode, 39
Direct AddressingMode 40
Extended AddressingMode 41
Relative AddressingMode 41
Indexed AddressingModes, 43
5-Bit Constant Offset Indexed Addressing. 45
9-Bit Constant Offset Indexed Addressing. 46
16-Bit Constant Offset Indexed Addressing. 46
16-Bit Constant Indirect Indexed Addressing. 47
Auto Pre/Post Decrement/Increment
Indexed Addressing. 47
Accumulator Offset Indexed Addressing 49
Accumulator D Indirect Indexed Addressing 49
Instructions Using Multiple Modes 50
Move InStructions 50
Bit Manipulation Instructions 52
Addressing Morethan 64 Kbytes 52

Section 4. Instruction Queue

CoNteNntSo 55
Introduction. 55
Queue Description 56

CPU12 — Rev. 2.0

8

Table of Contents MOTOROLA

CPU12 — Rev. 2.0

Table of Contents

4.4 Data MovementintheQueue.......................... 57
44.1 No Movement. 57
4.4.2 Latch DatafromBuUS. 57
4.4.3 Advance and Load fromDataBus.................... 57
44.4 Advance and Load fromBuffer. 57
45 ChangesinExecutionFlow 58
45.1 EXceptions 58
45.2 Subroutines 59
45.3 Branches 60
45.3.1 ShortBranches 60
45.3.2 LongBranches. 61
45.3.3 Bit Condition Branches 62
45.3.4 Loop Primitives i 62
45.4 JUMPS. .o 62
Section 5. Instruction Set Overview
5.1 Contents. 63
5.2 Introduction. 64
5.3 Instruction Set Description 65
5.4 Load and Store Instructions 66
5.5 Transfer and Exchange Instructions. 67
56 Movelnstructions 68
5.7 Addition and Subtraction Instructions. 69
5.8 Binary-Coded Decimal Instructions 70
5.9 Decrement and Increment Instructions. 71
5.10 Compare and Test Instructions. 72
5.11 Boolean LogicInstructions 73
5.12 Clear, Complement, and Negate Instructions. 74
5.13 Multiplication and Division Instructions. 75
5.14 Bit Test and Manipulation Instructions 76
5.15 Shift and Rotate Instructions. 77

Reference Manual

MOTOROLA

Table of Contents 9

Table of Contents

5.16 Fuzzy LogiclInstructions. i .. 78
5.16.1 Fuzzy Logic Membership Instruction 78
5.16.2 Fuzzy Logic Rule Evaluation Instructions. 78
5.16.3 Fuzzy Logic Averaging Instruction 79
5.17 Maximum and Minimum Instructions 81
5.18 Multiply and Accumulate Instruction. 82
5.19 Table Interpolation Instructions. 82
5.20 BranchiInstructions. 83
5.20.1 Short Branch Instructions. 84
5.20.2 Long Branchlinstructions 85
5.20.3 Bit Condition Branch Instructions. 86
5.21 Loop Primitive Instructions 87
5.22 Jump and Subroutine Instructions 88
5.23 Interrupt Instructions. 89
5.24 Index Manipulation Instructions 91
5.25 Stacking Instructions. 92
5.26 Pointer and Index Calculation Instructions 93
5.27 Condition Code Instructions 94
5.28 Stopand Wait Instructions 95
5.29 Background Mode and Null Operations 96

Section 6. Instruction Glossary

6.1 Contents. 97
6.2 Introduction. 97
6.3 Glossary Information. 98
6.4 ConditionCodeChanges............ 99
6.5 ObjectCode Notation. 100
6.6 Source FOrmS. 101
6.7 Cycle-by-Cycle Execution., 104
6.8 Glossary 109
Reference Manual CPU12 — Rev. 2.0

10 Table of Contents MOTOROLA

7.1
7.2
7.3
7.4

7.5

7.5.1
7.5.2
7.5.3
7.5.4

7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7.7
7.8

7.9

79.1
7.9.2
7.9.3

8.1
8.2
8.3

8.4

8.4.1
8.4.2
8.4.3

8.4.4

CPU12 — Rev. 2.0

Table of Contents

Section 7. Exception Processing

Contents 323
Introduction. 323
Types of EXceptions 324
Exception Priority 325
ReSetS. . . . 326
Power-OnReset. 327
External Reset 327
COPReset. 327
Clock MonitorReset. i 327
INtermUPtS. . . . e 328
Non-Maskable Interrupt Request (XIRQ) 328
Maskable Interrupts 329
Interrupt Recognition 329
External Interrupts 330
Return-from-Interrupt Instruction (RTI). 330
Unimplemented Opcode Trap.iu... 331
Software Interrupt Instruction (SWI) 331
Exception ProcessingFlow. 331
VectorFetch. 333
Reset Exception Processing 333

Interrupt and Unimplemented Opcode
Trap Exception Processing 333

Section 8. Development and Debug Support

CoNteNtS 335
Introduction. 336
External Reconstruction of the Queue 336
Instruction Queue Status Signals 337
ZeroEncoding (0:0) 338
LAT — Latch Data from Bus Encoding (0:1) 339
ALD — Advance and Load from Data Bus
Encoding (1:0). 339
ALL — Advance and Load from Latch
Encoding (1:1).t 339

Reference Manual

MOTOROLA

Table of Contents 11

Table of Contents

8.4.5
8.4.6

8.4.7

8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3

8.6

8.6.1
8.6.2
8.6.3
8.6.4

8.7

8.8
8.8.1
8.8.2

9.1
9.2

9.3

93.1
9.3.2
9.3.3

9.4

9.5
95.1

Reference Manual

INT — Interrupt Sequence Encoding (0:1)............. 339

SEV — Start Instruction on Even Address
Encoding (1:0). 340

SOD — Start Instruction on Odd Address
Encoding (1:1).t 340
Implementing Queue Reconstruction. 340
Queue Status Registers. 341
in_add, in_datRegisters 341
fetch_add, fetch_dat Registers 341
stl add,stl datRegisters 342
st2_add, st2 datRegisters 342
Reconstruction Algorithm 342
LATDecoding 343
ALD Decodingo i 343
ALLDecoding i 343
Background DebugMode. L 344
Enabling BDM 344
BDM Serial Interface 345
BDM Commandsuuiiinnn. 347
BDMReQISters. 350
Instruction Taggingo oo i it 352
Breakpoints. 353
Breakpoint Type. 353
BreakpointOperation. 354

Section 9. Fuzzy Logic Support

Contents 355
Introduction. 356
Fuzzy Logic BasiCS. e 357
Fuzzification (MEM) 359
Rule Evaluation (REVand REVW). 361
Defuzzification (WAV) i 363
Example Inference Kernel 364
MEM Instruction Details 366
Membership Function Definitions. 366

CPU12 — Rev. 2.0

12

Table of Contents MOTOROLA

CPU12 — Rev. 2.0

Table of Contents

9.5.2 Abnormal Membership Function Definitions. 368
9.5.2.1 Abnormal Membership FunctionCase 1 370
9.5.2.2 Abnormal Membership FunctionCase 2 371
9.5.2.3 Abnormal Membership FunctionCase 3 371
9.6 REV and REVW Instruction Details 372
9.6.1 Unweighted Rule Evaluation (REV) 372
9.6.1.1 Set Up Prior to ExecutingREV 372
9.6.1.2 InterruptDetails 374
9.6.1.3 Cycle-by-Cycle Details forREV 374
9.6.2 Weighted Rule Evaluation (REVW) 378
9.6.2.1 Set Up Prior to Executing REVW. 378
9.6.2.2 InterruptDetails 380
9.6.2.3 Cycle-by-Cycle Details for REVW 380
9.7 WAVnstructionDetails 383
9.7.1 Set Up Prior to Executing WAV 384
9.7.2 WAV Interrupt Details. 384
9.7.3 Cycle-by-Cycle Details for WAV andwavr............. 385
9.8 Custom Fuzzy Logic Programming. 388
9.8.1 Fuzzification Variations 388
9.8.2 Rule Evaluation Variations. 391
9.8.3 Defuzzification Variations. 392

Section 10. Memory Expansion

10.1 Contents. 395
10.2 Introduction. 396
10.3 Expansion System Description. 396
10.4 CALL and Return from Call Instructions. 398
10.5 Address Lines for Expansion Memory 401
10.6 OverlayWindow Controls. 401
10.7 Using Chip-SelectCircuits 402
10.7.1 Program Memory Expansion Chip-Select Controls 403
10.7.1.1 CSP1EControlBit............cooiiii . 403
10.7.1.2 CSPOEControl Bit 403
10.7.1.3 CSPIFLControlBit........... 403
10.7.2.4 CSPA21Control Bit............ 403

Reference Manual

MOTOROLA

Table of Contents 13

Table of Contents

Reference Manual

10.7.1.5 STRPOA:STRPOB Control Field. 403
10.7.1.6 STRP1A:STRP1B Control Field. 404
10.7.2 Data Expansion Chip Select Controls 404
10.7.2.1 CSDE Control Bit. 404
10.7.2.2 CSDHF Control Bit. i 404
10.7.2.3 STRDA:STRDB Control Field 405
10.7.3 Extra Expansion Chip SelectControls 405
10.7.3.1 CSEEControlBit i 405
10.7.3.2 CSEEP Control Bit. 405
10.7.3.3 STREA:STREB Control Field. 405
10.8 System NOtes 405

Appendix A. Instruction Reference

Al CoNteNntS. e 407
A2 Introduction. 407
A.3 Instruction SetSummary 408
A.3.1 Notation Used in Instruction Set Summary 408
A3.1.1 Explanation of Italic Expressions

in Source Form Column 408
A.3.1.2 AddressModes 409
A.3.1.3 Machine Coding. 409
A3.14 AccessDetail 410
A.3.15 Condition Codes Columns 410
A.4 Indexed Addressing Postbyte Encoding. 411
A.5 Transfer and Exchange Postbyte Encoding.............. 411
A.6 Loop Primitive Postbyte Encoding 411
A7 Opcode Map. e 412
A.8 Memory Expansion. 432
A.9 Hexadecimalto ASCII Conversion. 438
A.10 Hexadecimal to Decimal Conversion 439
A.11 Decimal to Hexadecimal Conversion 439

CPU12 — Rev. 2.0

14

Table of Contents MOTOROLA

Table of Contents

Appendix B. M6BHC11 to M68HC12 Upgrade Path

B.1 Contents. 441
B.2 Introduction. 442
B.3 CPUl12DesignGoals.......... 442
B.4 Source Code Compatibility. 442
B.5 Programmer’s Model and Stacking. 445
B.6 True 16-Bit Architecture 445
B.6.1 Bus Structures 446
B.6.2 Instruction Queue. e 446
B.6.3 Stack Function 448
B.7 ImprovedIndexing 449
B.7.1 Constant OffsetIndexing 450
B.7.2 Auto-IncrementiIndexing 451
B.7.3 Accumulator Offset Indexing 452
B.7.4 Indirect Indexing. 453
B.8 Improved Performance. 453
B.8.1 Reduced CycleCounts. 453
B.8.2 FastMath........ 454
B.8.3 Code Size Reduction, 455
B.9 Additional Functions 456
B.9.1 Memory-to-Memory Moves 458
B.9.2 Universal Transfer and Exchange 459
B.9.3 Loop Construct. e 459
B.9.4 LongBranches. i 459
B.9.5 Minimum and Maximum Instructions 460
B.9.6 Fuzzy Logic Support. 461
B.9.7 Table Lookup and Interpolation 461
B.9.8 Extended Bit Manipulation 462
B.9.9 Pushand PullDandCCR 462
B.9.10 Compare SP. 462
B.9.11 Support for Memory Expansion 462
CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Table of Contents 15

Table of Contents

Reference Manual

Cl
C.2
C.3

C4

C41
CA4.2
C.43

C.5
C.6
C.7
C.8
C.9
C.10
C.11

Appendix C. High-Level Language Support

CoNntentS 465
Introduction. 465
Data TYpPeS . . . oo e 466
Parameters and Variables 466

Register PushesandPulls. 467

Allocating and Deallocating Stack Space. 467

Frame Pointer. 468
Increment and Decrement Operators. 469
Higher Math Functions 469
Conditional If Constructs. 470
Case and Switch Statements 470
POINterS. . .. e 470
FunctionCalls. i 471
Instruction Set Orthogonality 472

Index

INdeX ... 473

CPU12 — Rev. 2.0

16

Table of Contents MOTOROLA

Reference Manual — CPU12

CPU12 — Rev. 2.0

Figure

2-1

6-1

7-1

8-1
8-2

8-4
8-5

9-1
9-2
9-3
9-4

9-6
9-7

9-9

9-10
9-11
9-12

10-1

List of Figures

Title Page
Programming Model. 28
Example Glossary Page. 98
Exception Processing Flow Diagram 332
Queue Status Signal Timing. 338
BDM Host to Target Serial Bit Timing 346
BDM Target to Host Serial Bit Timing (Logic 1) 346
BDM Target to Host Serial Bit Timing (Logic0) 347
BDM Status Register (STATUS) 350
Tag Input TiMiNg e 352
Block Diagram of a Fuzzy Logic System 358
Fuzzification Using Membership Functions 360
Fuzzy Inference Engine 364
Defining a Normal Membership Function. 367
MEM Instruction Flow Diagram 369
Abnormal Membership FunctionCase 1 370
Abnormal Membership FunctionCase 2 371
Abnormal Membership FunctionCase 3 371
REV Instruction Flow Diagram. 375
REVW Instruction Flow Diagram 382
WAV and wavr Instruction Flow Diagram. 386
Endpoint Table Handling 390
Memory Expansion Paging Summary 434

Reference Manual

MOTOROLA

List of Figures 17

List of Figures

Reference Manual CPU12 — Rev. 2.0

18 List of Figures MOTOROLA

Reference Manual — CPU12

CPU12 — Rev. 2.0

Table

3-1
3-2
3-3

5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25

List of Tables

Title Page
M68HC12 Addressing Mode Summary 38
Summary of Indexed Operations 44
PC Offsets for MOVE Instructions 51
Load and Store Instructions 66
Transfer and Exchange Instructions. 67
Move Instructions 68
Addition and Subtraction Instructions. 69
BCD INStructions. 70
Decrement and Increment Instructions. 71
Compare and Test Instructions 72
Boolean Logic Instructions 73
Clear, Complement, and Negate Instructions. 74
Multiplication and Division Instructions. 75
Bit Test and Manipulation Instructions 76
Shift and Rotate Instructions 77
Fuzzy Logic Instructions. 79
Minimum and Maximum Instructions 81
Multiply and Accumulate Instructions. 82
Table Interpolation Instructions 83
Short Branch Instructions. 84
Long Branch Instructions 85
Bit Condition Branch Instructions 86
Loop Primitive Instructions 87
Jump and Subroutine Instructions 89
Interrupt Instructions. 90
Index Manipulation Instructions 91
Stacking Instructions 92
Pointer and Index Calculation Instructions. 93

Reference Manual

MOTOROLA

List of Tables 19

List of Tables

Reference Manual

Table

5-26
5-27
5-28

7-1
7-2

8-1
8-2
8-3
8-4
8-5

10-1

Title Page
Condition Code Instructions i, 94
Stop and Wait Instructions 95
Background Mode and Null Operation Instructions 96
CPU12 ExceptionVectorMapt 324
Stacking Order on Entry to Interrupts. 329
IPIPE1 and IPIPEODecoding.o... 338
BDM Commands Implemented in Hardware 348
BDM Firmware Commands 349
BDM Register Mappingciiiiii. 350
TagPinFunction 352
Mapping Precedence 398
Instruction Set Summary 413
Indexed Addressing Mode Postbyte Encoding (xb) 428
Summary of Indexed Operations 429
Transfer and Exchange Postbyte Encoding. 430
Loop Primitive Postbyte Encoding (Ib) 431
Branch/Complementary Branch 431
CPU120pcodeMap ...t 436
Hexadecimal to ASCIl Conversion. 438
Hexadecimal to/from Decimal Conversion 439
Translated M6BHC11 Mnemonics 443
Instructions with Smaller ObjectCode 444
Comparison of Math Instruction Speeds 454
New M68HC12 Instructions, 456

CPU12 — Rev. 2.0

20

List of Tables MOTOROLA

Reference Manual — CPU12

1.1 Contents

1.2 Introduction

1.3 Features

CPU12 — Rev. 2.0

Section 1. Introduction

1.2 Introduction. 21
1.3 Features 21
14 Readership........... . e 22
15 Symbolsand Notation. 23
151 Abbreviations for System Resources. 23
152 Memory and Addressing i 24
15.3 Operators 25
154 Definitions. 26

This manual describes the features and operation of the CPU12 (central
processing unit, CPU) used in all M68HC12 microcontrollers.

The CPU12 is a high-speed, 16-bit processing unit that has a
programming model identical to that of the industry standard M68HC11
central processor unit (CPU). The CPU12 instruction set is a proper
superset of the M68HC11 instruction set, and M68HC11 source code is
accepted by CPU12 assemblers with no changes.

The CPU12 has full 16-bit data paths and can perform arithmetic
operations up to 20 bits wide for high-speed math execution.

Unlike many other 16-bit CPUs, the CPU12 allows instructions with odd
byte counts, including many single-byte instructions. This allows much
more efficient use of read-only memory (ROM) space.

Reference Manual

MOTOROLA

Introduction 21

Introduction

1.4 Readership

Reference Manual

An instruction queue buffers program information so the CPU has
immediate access to at least three bytes of machine code at the start of
every instruction.

In addition to the addressing modes found in other Motorola MCUs, the
CPU12 offers an extensive set of indexed addressing capabilities
including:

e Using the stack pointer as an index register in all indexed
operations

* Using the program counter as an index register in all but auto
increment/decrement mode

* Accumulator offsets allowed using A, B, or D accumulators

e Automatic pre- or post-increment or pre- or post-decrement
(by -8 to +8)

« 5-bit, 9-bit, or 16-bit signed constant offsets

* 16-bit offset indexed-indirect and accumulator D offset
indexed-indirect addressing

This manual is written for professionals and students in electronic design
and software development. The primary goal is to provide information
necessary to implement control systems using M68HC12 devices. Basic
knowledge of electronics, microprocessors, and assembly language
programming is required to use the manual effectively. Because the
CPU12 has a great deal of commonality with the M68HC11 CPU, prior
knowledge of M6BHC11 devices is helpful, but is not essential. The
CPU12 also includes features that are new and unique. In these cases,
supplementary material in the text explains the new technology.

CPU12 — Rev. 2.0

22

Introduction MOTOROLA

Introduction
Symbols and Notation

1.5 Symbols and Notation

The symbols and notation shown here are used throughout the manual.
More specialized usages that apply only to the instruction glossary are
described at the beginning of that section.

1.5.1 Abbreviations for System Resources

— Accumulator A

— Accumulator B

— Double accumulator D (A : B)
— Index register X

— Index register Y

SP — Stack pointer

PC — Program counter

CCR — Condition code register

S — STOP instruction control bit

X — Non-maskable interrupt control bit

H — Half-carry status bit

| — Maskable interrupt control bit

N — Negative status bit

Z — Zero status bit

V — Two’s complement overflow status bit
C — Carry/Borrow status bit

< X OWw>»

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Introduction 23

Introduction

1.5.2 Memory and Addressing

Reference Manual

M — 8-bit memory location pointed to by the effective
address of the instruction
M : M+1 — 16-bit memory location. Consists of the location

pointed to by the effective address concatenated with
the next higher memory location. The most significant
byte is at location M.
M~M+3 — 32-bit memory location. Consists of the effective
Mwyy~M(y+3) ~ address of the instruction concatenated with the next
three higher memory locations. The most significant
byte is at location M or My,.

Mx) — Memory locations pointed to by index register X

Msp) — Memory locations pointed to by the stack pointer

My+3) — Memory locations pointed to by index register Y plus 3,
respectively.

PPAGE — Program overlay page (bank) number for extended
memory (>64 Kbytes).

Page — Program overlay page

XH — High-order byte

XL — Low-order byte

() — Content of register or memory location

$ — Hexadecimal value

% — Binary value

CPU12 — Rev. 2.0

24

Introduction MOTOROLA

1.5.3 Operators

CPU12 — Rev. 2.0

x O +

Z|

Introduction
Symbols and Notation

Addition

Subtraction

Logical AND

Logical OR (inclusive)

Logical exclusive OR

Multiplication

Division

Negation. One’s complement (invert each bit of M)

Concatenate
Example: A : B means the 16-bit value formed by concatenat-
ing 8-bit accumulator A with 8-bit accumulator B.
A is in the high-order position.

Transfer
Example: (A) O M means the content of accumulator A is
transferred to memory location M.

Exchange
Example: D = X means exchange the contents of D with
those of X.

Reference Manual

MOTOROLA

Introduction 25

Introduction

1.5.4 Definitions

Reference Manual

Logic level 1 is the voltage that corresponds to the true (1) state.
Logic level 0 is the voltage that corresponds to the false (0) state.
Set refers specifically to establishing logic level 1 on a bit or bits.
Cleared refers specifically to establishing logic level 0 on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal
changes from logic level 1 to logic level 0 when asserted, and an
active high signal changes from logic level 0 to logic level 1.

Negated means that an asserted signal changes logic state. An active
low signal changes from logic level 0 to logic level 1 when negated,
and an active high signal changes from logic level 1 to logic level 0.

ADDR is the mnemonic for address bus.
DATA is the mnemonic for data bus.

LSB means least significant bit or bits.

MSB means most significant bit or bits.
LSW means least significant word or words.
MSW means most significant word or words.

A specific mnemonic within a range is referred to by mnemonic and
number. For example, A7 is bit 7 of accumulator A.

A range of mnemonics is referred to by mnemonic and the numbers
that define the range. For example, DATA[15:8] form the high byte of
the data bus.

CPU12 — Rev. 2.0

26

Introduction MOTOROLA

Reference Manual — CPU12

2.1 Contents

2.2 Introduction

CPU12 — Rev. 2.0

Section 2. Overview

2.2 IntroducCtion. 27
2.3 ProgrammingModel........... 28
2.3.1 Accumulators 29
2.3.2 Index Registers i 29
2.3.3 Stack Pointer 29
2.3.4 Program Counter i 30
2.3.5 Condition Code Reqister i, 30
2351 SControl Bit. 31
2.3.5.2 XMaskBit 32
2.3.5.3 HStatus Bit 32
2.3.5.4 IMask Bit. 33
2.3.55 NStatus Bit 33
2.3.5.6 ZStatus Bit 33
2.3.5.7 VStatus Bit 34
2.3.5.8 CStatusBit 34
24 DataTypPeS . ..ot e 34
25 Memory Organization., 35
26 Instruction QUEUEottt e 35

This section describes the CPU12 programming model, register set, the
data types used, and basic memory organization.

Reference Manual

MOTOROLA

Overview 27

Overview

2.3 Programming Model

Reference Manual

The CPU12 programming model, shown in Figure 2-1, is the same as
that of the M68HC11 CPU. The CPU has two 8-bit general-purpose
accumulators (A and B) that can be concatenated into a single 16-bit
accumulator (D) for certain instructions. It also has:

Two index registers (X and Y)
16-bit stack pointer (SP)

16-bit program counter (PC)

8-bit condition code register (CCR)

7 A 0f7 B 0
15 D 0
15 IX 0
15 Iy 0
15 sp 0
15 PC 0

S XH I N zZ V C

8-BIT ACCUMULATORS A AND B
OR
16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

CONDITION CODE REGISTER

Figure 2-1. Programming Model

CPU12 — Rev. 2.0

28

Overview

MOTOROLA

2.3.1 Accumulators

2.3.2 Index Registers

2.3.3 Stack Pointer

CPU12 — Rev. 2.0

Overview
Programming Model

General-purpose 8-bit accumulators A and B are used to hold operands
and results of operations. Some instructions treat the combination of
these two 8-bit accumulators (A : B) as a 16-bit double accumulator (D).

Most operations can use accumulator A or B interchangeably. However,
there are a few exceptions. Add, subtract, and compare instructions
involving both A and B (ABA, SBA, and CBA) only operate in one
direction, so it is important to make certain the correct operand is in the
correct accumulator. The decimal adjust accumulator A (DAA)
instruction is used after binary-coded decimal (BCD) arithmetic
operations. There is no equivalent instruction to adjust accumulator B.

16-bit index registers X and Y are used for indexed addressing. In the
indexed addressing modes, the contents of an index register are added
to 5-bit, 9-bit, or 16-bit constants or to the content of an accumulator to
form the effective address of the instruction operand. The second index
register is especially useful for moves and in cases where operands from
two separate tables are used in a calculation.

The CPU12 supports an automatic program stack. The stack is used to
save system context during subroutine calls and interrupts and can also
be used for temporary data storage. The stack can be located anywhere
in the standard 64-Kbyte address space and can grow to any size up to
the total amount of memory available in the system.

The stack pointer (SP) holds the 16-bit address of the last stack location
used. Normally, the SP is initialized by one of the first instructions in an
application program. The stack grows downward from the address
pointed to by the SP. Each time a byte is pushed onto the stack, the
stack pointer is automatically decremented, and each time a byte is
pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the
calling instruction is automatically calculated and pushed onto the stack.
Normally, a return-from-subroutine (RTS) or a return-from-call (RTC)

Reference Manual

MOTOROLA

Overview 29

Overview

instruction is executed at the end of a subroutine. The return instruction
loads the program counter with the previously stacked return address
and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution. The
address of the next instruction is calculated and pushed onto the stack,
all the CPU registers are pushed onto the stack, the program counter is
loaded with the address pointed to by the interrupt vector, and execution
continues at that address. The stacked registers are referred to as an
interrupt stack frame. The CPU12 stack frame is the same as that of the
M68HC11.

NOTE: These instructions can be interrupted, and they resume execution once
the interrupt has been serviced:
* REV (fuzzy logic rule evaluation)
« REVW (fuzzy logic rule evaluation (weighted))
« WAV (weighted average)

2.3.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of
the next instruction to be executed. It is automatically incremented each
time an instruction is fetched.

2.3.5 Condition Code Register

The condition code register (CCR), named for its five status indicators,
contains:

* Five status indicators
e Two interrupt masking bits

¢ STOP instruction control bit

Reference Manual CPU12 — Rev. 2.0

30 Overview MOTOROLA

2.3.5.1 S Control Bit

CPU12 — Rev. 2.0

Overview
Programming Model

The status bits reflect the results of CPU operation as it executes
instructions. The five flags are:

e Half carry (H)

* Negative (N)

e Zero (2)

e Overflow (V)

» Carry/borrow (C)

The half-carry flag is used only for BCD arithmetic operations. The N, Z,
V, and C status bits allow for branching based on the results of a
previous operation.

In some architectures, only a few instructions affect condition codes, so
that multiple instructions must be executed in order to load and test a
variable. Since most CPU12 instructions automatically update condition
codes, it is rarely necessary to execute an extra instruction for this
purpose. The challenge in using the CPU12 lies in finding instructions
that do not alter the condition codes. The most important of these
instructions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see
Appendix A. Instruction Reference) to check which condition codes
are affected by a particular instruction.

The following paragraphs describe normal uses of the condition codes.
There are other, more specialized uses. For instance, the C status bit is
used to enable weighted fuzzy logic rule evaluation. Specialized usages
are described in the relevant portions of this manual and in Section 6.

Instruction Glossary.

Setting the S bit disables the STOP instruction. Execution of a STOP
instruction causes the on-chip oscillator to stop. This may be undesirable
in some applications. If the CPU encounters a STOP instruction while
the S bit is set, it is treated like a no-operation (NOP) instruction and
continues to the next instruction.

Reference Manual

MOTOROLA

Overview 31

Overview

2.3.5.2 X Mask Bit

2.3.5.3 H Status Bit

Reference Manual

The XIRQ input is an updated version of the NMI input found on earlier
generations of MCUs. Non-maskable interrupts are typically used to deal
with major system failures, such as loss of power. However, enabling
non-maskable interrupts before a system is fully powered and initialized
can lead to spurious interrupts. The X bit provides a mechanism for
enabling non-maskable interrupts after a system is stable.

By default, the X bit is set to 1 during reset. As long as the X bit remains
set, interrupt service requests made via the XIRQ pin are not
recognized. An instruction must clear the X bit to enable non-maskable
interrupt service requests made via the XIRQ pin. Once the X bit has
been cleared to 0, software cannot reset it to 1 by writing to the CCR.
The X bit is not affected by maskable interrupts.

When an m interrupt occurs after non-maskable interrupts are
enabled, both the X bit and the | bit are set automatically to prevent other
interrupts from being recognized during the interrupt service routine. The
mask bits are set after the registers are stacked, but before the interrupt
vector is fetched.

Normally, a return-from-interrupt (RTI) instruction at the end of the
interrupt service routine restores register values that were present
before the interrupt occurred. Since the CCR is stacked before the X bit
is set, the RTI normally clears the X bit, and thus re-enables
non-maskable interrupts. While it is possible to manipulate the stacked
value of X so that X is set after an RTI, there is no software method to
reset X (and disable NMI) once X has been cleared.

The H bit indicates a carry from accumulator A bit 3 during an addition
operation. The DAA instruction uses the value of the H bit to adjust a
result in accumulator A to correct BCD format. H is updated only by the
add accumulator A to accumulator B (ABA), add without carry (ADD),
and add with carry (ADC) instructions.

CPU12 — Rev. 2.0

32

Overview MOTOROLA

2.3.5.4 | Mask Bit

2.3.5.5 N Status Bit

2.3.5.6 Z Status Bit

CPU12 — Rev. 2.0

Overview
Programming Model

The | bit enables and disables maskable interrupt sources. By default,
the | bit is set to 1 during reset. An instruction must clear the | bit to
enable maskable interrupts. While the | bit is set, maskable interrupts
can become pending and are remembered, but operation continues
uninterrupted until the | bit is cleared.

When an interrupt occurs after interrupts are enabled, the | bit is
automatically set to prevent other maskable interrupts during the
interrupt service routine. The | bit is set after the registers are stacked,
but before the firstinstruction in the interrupt service routine is executed.

Normally, an RTI instruction at the end of the interrupt service routine
restores register values that were present before the interrupt occurred.
Since the CCR is stacked before the | bit is set, the RTI normally clears
the I bit, and thus re-enables interrupts. Interrupts can be re-enabled by
clearing the I bit within the service routine, but implementing a nested
interrupt management scheme requires great care and seldom improves
system performance.

The N bit shows the state of the MSB of the result. N is most commonly
used in two’s complement arithmetic, where the MSB of a negative
number is 1 and the MSB of a positive number is 0, but it has other uses.
For instance, if the MSB of a register or memory location is used as a
status flag, the user can test status by loading an accumulator.

The Z bit is set when all the bits of the result are 0s. Compare
instructions perform an internal implied subtraction, and the condition
codes, including Z, reflect the results of that subtraction. The increment
index register X (INX), decrement index register X (DEX), increment
index register Y (INY), and decrement index register Y (DEY)
instructions affect the Z bit and no other condition flags. These
operations can only determine = (equal) and # (not equal).

Reference Manual

MOTOROLA

Overview 33

Overview

2.3.5.7 V Status Bit

2.3.5.8 C Status Bit

2.4 Data Types

Reference Manual

The V bitis set when two’s complement overflow occurs as a result of an
operation.

The C bit is set when a carry occurs during addition or a borrow occurs
during subtraction. The C bit also acts as an error flag for multiply and
divide operations. Shift and rotate instructions operate through the C bit
to facilitate multiple-word shifts.

The CPU12 uses these types of data:
* Bits

5-bit signed integers

» 8-bit signed and unsigned integers

e 8-bit, 2-digit binary-coded decimal humbers
* 9-bit signed integers

» 16-bit signed and unsigned integers

* 16-bit effective addresses

» 32-bit signed and unsigned integers
Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed
addressing modes.

Sixteen-bit effective addresses are formed during addressing mode
computations.

Thirty-two-bit integer dividends are used by extended division
instructions. Extended multiply and extended multiply-and-accumulate
instructions produce 32-bit products.

CPU12 — Rev. 2.0

34

Overview MOTOROLA

Overview
Memory Organization

2.5 Memory Organization

The standard CPU12 address space is 64 Kbytes. Some M68HC12
devices support a paged memory expansion scheme that increases the
standard space by means of predefined windows in address space. The
CPU12 has special instructions that support use of expanded memory.
See Section 10. Memory Expansion for more information.

Eight-bit values can be stored at any odd or even byte address in
available memory.

Sixteen-bit values are stored in memory as two consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

Thirty-two-bit values are stored in memory as four consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

All input/output (1/0O) and all on-chip peripherals are memory-mapped.
No special instruction syntax is required to access these addresses.
On-chip registers and memory typically are grouped in blocks which can
be relocated within the standard 64-Kbyte address space. Refer to
device documentation for specific information.

2.6 Instruction Queue

The CPU12 uses an instruction queue to buffer program information.
The mechanism is called a queue rather than a pipeline because a
typical pipelined CPU executes more than one instruction at the same
time, while the CPU12 always finishes executing an instruction before
beginning to execute another. Refer to Section 4. Instruction Queue
for more information.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Overview 35

Overview

Reference Manual CPU12 — Rev. 2.0

36 Overview MOTOROLA

Reference Manual — CPU12

3.1 Contents

3.2 Introduction

CPU12 — Rev. 2.0

Section 3. Addressing Modes

3.2 Introduction. 37
3.3 Mode SumMmaryi 38
3.4 Effective AdAress 39
3.5 Inherent AddressingMode 39
3.6 Immediate AddressingMode 39
3.7 Direct AddressingMode 40
3.8 Extended AddressingMode 41
3.9 Relative AddressingMode 41
3.10 Indexed AddressingModes i, 43
3.10.1 5-Bit Constant Offset Indexed Addressing. 45
3.10.2 9-Bit Constant Offset Indexed Addressing. 46
3.10.3 16-Bit Constant Offset Indexed Addressing. 46
3.10.4 16-Bit Constant Indirect Indexed Addressing. 47
3.10.5 Auto Pre/Post Decrement/Increment

Indexed Addressing. 47
3.10.6 Accumulator Offset Indexed Addressing 49
3.10.7 Accumulator D Indirect Indexed Addressing 49
3.11 Instructions Using Multiple Modes 50
3.11.1 Move Instructions 50
3.11.2 Bit Manipulation Instructions 52
3.12 Addressing Morethan 64 Kbytes 52

Addressing modes determine how the central processor unit (CPU)
accesses memory locations to be operated upon. This section discusses
the various modes and how they are used.

Reference Manual

MOTOROLA

Addressing Modes 37

3.3 Mode Summary

Addressing Modes

Addressing modes are an implicit part of CPU12 instructions. Refer to
Appendix A. Instruction Reference for the modes used by each
instruction. All CPU12 addressing modes are shown in Table 3-1.

Table 3-1. M68HC12 Addressing Mode Summary

Addressing Mode

Source Format

Abbreviation

Description

INST

(D accumulator offset)

Inherent (no externally INH Operands (if any) are in CPU registers
supplied operands)
. INST #opr8i Operand is included in instruction stream
Immediate or MM 8- or 16-bit size implied by context
INST #0pri6i plied by
. Operand is the lower 8 bits of an address
Direct INST opr8a DIR in the range $0000-$00FF
Extended INST oprl6a EXT Operand is a 16-bit address
. INST rei8 An 8-bit or 16-bit relative offset from the current pc
Relative or REL is supplied in the instruction
INST rel16 PP
Indexed 5-bit signed constant offset
(5-bit offset) INST 0prx5,xysp IDX from X, Y, SP, or PC
Indexed
(pre-decrement) INST oprx3,-xys IDX Auto pre-decrement x,y, orspby 1 ~8
Indexed .
(pre-increment) INST oprx3,+xys IDX Auto pre-increment x, y, or spby 1 ~ 8
Indexed
(post-decrement) INST oprx3,xys— IDX Auto post-decrement x,y, orsp by 1 ~ 8
Indexed .
(post-increment) INST oprx3,xys+ IDX Auto post-increment x, y,orspby 1 ~8
Indexed Indexed with 8-bit (A or B) or 16-bit (D)
(accumulator offset) INST abdxysp IDX accumulator offset from X, Y, SP, or PC
Indexed 9-bit signed constant offset from X, Y, SP, or PC
(9-bit offset) INST oprx9,xysp IDX1 (lower 8 bits of offset in one extension byte)
Indexed 16-bit constant offset from X, Y, SP, or PC
(16-bit offset) INST oprx16.xysp IDX2 (16-bit offset in two extension bytes)
Indexed-Indirect Pointer to operand is found at...
(16-bit offset) INST [oprx16,xysp] [IDX2] 16-bit constant offset from X, Y, SP, or PC
(16-bit offset in two extension bytes)
Indexed-Indirect INST [D.xysp] [D.IDX] Pointer to operand is found at...

X, Y, SP, or PC plus the value in D

Reference Manual

CPU12 — Rev. 2.0

38

Addressing Modes

MOTOROLA

Addressing Modes
Effective Address

The CPU12 uses all M68HC11 modes as well as new forms of indexed
addressing. Differences between M68HC11 and M68HC12 indexed
modes are described in 3.10 Indexed Addressing Modes. Instructions
that use more than one mode are discussed in 3.11 Instructions Using
Multiple Modes.

3.4 Effective Address

Each addressing mode except inherent mode generates a 16-bit
effective address which is used during the memory reference portion of
the instruction. Effective address computations do not require extra
execution cycles.

3.5 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or
all operands are in internal CPU registers. In either case, the CPU does
not need to access any memory locations to complete the instruction.

Examples:
NOP ;this instruction has no operands
I NX ;operand is a CPU regi ster

3.6 Immediate Addressing Mode

CPU12 — Rev. 2.0

Operands for immediate mode instructions are included in the instruction
stream and are fetched into the instruction queue one 16-bit word at a
time during normal program fetch cycles. Since program data is read into
the instruction queue several cycles before it is needed, when an
iImmediate addressing mode operand is called for by an instruction, it is
already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode
operand. One common programming error is to accidentally omit the #
symbol. This causes the assembler to misinterpret the expression that
follows it as an address rather than explicitly provided data. For
example, LDAA #3$55 means to load the immediate value $55 into the A
accumulator, while LDAA $55 means to load the value from address

Reference Manual

MOTOROLA

Addressing Modes 39

Addressing Modes

$0055 into the A accumulator. Without the # symbol, the instruction is
erroneously interpreted as a direct addressing mode instruction.

Examples:
LDAA #$55
LDX #$1234
LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing
modes. The size of the immediate operand is implied by the instruction
context. In the third example, the instruction implies a 16-bit immediate
value but only an 8-bit value is supplied. In this case the assembler will
generate the 16-bit value $0067 because the CPU expects a 16-bit value
in the instruction stream.

Example:
BRSET FOO, #$03, THERE

In this example, extended addressing mode is used to access the
operand FOO, immediate addressing mode is used to access the mask
value $03, and relative addressing mode is used to identify the
destination address of a branch in case the branch-taken conditions are
met. BRSET is listed as an extended mode instruction even though
immediate and relative modes are also used.

3.7 Direct Addressing Mode

Reference Manual

This addressing mode is sometimes called zero-page addressing
because it is used to access operands in the address range $0000
through $00FF. Since these addresses always begin with $00, only the
eight low-order bits of the address need to be included in the instruction,
which saves program space and execution time. A system can be
optimized by placing the most commonly accessed data in this area of
memory. The eight low-order bits of the operand address are supplied
with the instruction, and the eight high-order bits of the address are
assumed to be 0.

Example:
LDAA $55

This is a basic example of direct addressing. The value $55 is taken to
be the low-order half of an address in the range $0000 through $00FF.

CPU12 — Rev. 2.0

40

Addressing Modes MOTOROLA

Addressing Modes
Extended Addressing Mode

The high order half of the address is assumed to be 0. During execution
of this instruction, the CPU combines the value $55 from the instruction
with the assumed value of $00 to form the address $0055, which is then
used to access the data to be loaded into accumulator A.

Example:
LDX $20

In this example, the value $20 is combined with the assumed value of
$00 to form the address $0020. Since the LDX instruction requires a
16-bit value, a 16-bit word of data is read from addresses $0020 and
$0021. After execution of this instruction, the X index register will have
the value from address $0020 in its high-order half and the value from
address $0021 in its low-order half.

3.8 Extended Addressing Mode

In this addressing mode, the full 16-bit address of the memory location
to be operated on is provided in the instruction. This addressing mode
can be used to access any location in the 64-Kbyte memory map.

Example:
LDAA $F03B

This is a basic example of extended addressing. The value from address
$FO3B is loaded into the A accumulator.

3.9 Relative Addressing Mode

CPU12 — Rev. 2.0

The relative addressing mode is used only by branch instructions.
Short and long conditional branch instructions use relative addressing
mode exclusively, but branching versions of bit manipulation instructions
(branch if bits set (BRSET) and branch if bits cleared (BRCLR))

use multiple addressing modes, including relative mode. Refer to

3.11 Instructions Using Multiple Modes for more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit
offset contained in the byte that follows the opcode. Long branch
instructions consist of an 8-bit prebyte, an 8-bit opcode, and a signed
16-bit offset contained in the two bytes that follow the opcode.

Reference Manual

MOTOROLA

Addressing Modes 41

Addressing Modes

Reference Manual

Each conditional branch instruction tests certain status bits in the
condition code register. If the bits are in a specified state, the offset is
added to the address of the next memory location after the offset to form
an effective address, and execution continues at that address. If the bits
are not in the specified state, execution continues with the instruction
immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a
specific state. Various addressing modes can be used to access the
memory location. An 8-bit mask operand is used to test the bits. If each
bit in memory that corresponds to a 1 in the mask is either set (BRSET)
or clear (BRCLR), an 8-bit offset is added to the address of the next
memory location after the offset to form an effective address, and
execution continues at that address. If all the bits in memory that
correspond to a 1 in the mask are not in the specified state, execution
continues with the instruction immediately following the branch
instruction.

Both 8-bit and 16-bit offsets are signed two’s complement numbers to
support branching upward and downward in memory. The numeric
range of short branch offset values is $80 (-128) to $7F (127). The
numeric range of long branch offset values is $8000 (-32,768) to $7FFF
(32,767). If the offset is 0, the CPU executes the instruction immediately
following the branch instruction, regardless of the test involved.

Since the offset is at the end of a branch instruction, using a negative
offset value can cause the program counter (PC) to point to the opcode
and initiate a loop. For instance, a branch always (BRA) instruction
consists of two bytes, so using an offset of $FE sets up an infinite loop;
the same is true of a long branch always (LBRA) instruction with an
offset of $FFFC.

An offset that points to the opcode can cause a bit-condition branch to
repeat execution until the specified bit condition is satisfied. Since
bit-condition branches can consist of four, five, or six bytes depending
on the addressing mode used to access the byte in memory, the offset
value that sets up a loop can vary. For instance, using an offset of $FC
with a BRCLR that accesses memory using an 8-bit indexed postbyte
sets up a loop that executes until all the bits in the specified memory byte
that correspond to 1s in the mask byte are cleared.

CPU12 — Rev. 2.0

42

Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes

3.10 Indexed Addressing Modes

CPU12 — Rev. 2.0

The CPU12 uses redefined versions of M68HC11 indexed modes that
reduce execution time and eliminate code size penalties for using the Y
index register. In most cases, CPU12 code size for indexed operations
Is the same or is smaller than that for the M68HC11. Execution time is
shorter in all cases. Execution time improvements are due to both a
reduced number of cycles for all indexed instructions and to faster
system clock speed.

The indexed addressing scheme uses a postbyte plus zero, one, or two
extension bytes after the instruction opcode. The postbyte and
extensions do the following tasks:

1.
2.
3.

Specify which index register is used
Determine whether a value in an accumulator is used as an offset

Enable automatic pre- or post-increment or pre- or
post-decrement

Specify size of increment or decrement

Specify use of 5-, 9-, or 16-bit signed offsets

This approach eliminates the differences between X and Y register use
while dramatically enhancing the indexed addressing capabilities.

Major advantages of the CPU12 indexed addressing scheme are:

The stack pointer can be used as an index register in all indexed
operations.

The program counter can be used as an index register in all but
autoincrement and autodecrement modes.

A, B, or D accumulators can be used for accumulator offsets.

Automatic pre- or post-increment or pre- or post-decrement by —8
to +8

A choice of 5-, 9-, or 16-bit signed constant offsets
Use of two new indexed-indirect modes:

— Indexed-indirect mode with 16-bit offset
— Indexed-indirect mode with accumulator D offset

Reference Manual

MOTOROLA

Addressing Modes 43

Addressing Modes

Table 3-2 is a summary of indexed addressing mode capabilities and a
description of postbyte encoding. The postbyte is noted as xb in
instruction descriptions. Detailed descriptions of the indexed addressing
mode variations follow the table.

Table 3-2. Summary of Indexed Operations

Postbyte Sg(l;crj(;e Comments
Code (xb) rr;00=X,01=Y,10=SP, 11 =PC
Syntax
roNANAN r;rr 5-bit constant offset n = -16 to +15
—r; , r can specify X, Y, SP, or PC
Constant offset (9- or 16-bit signed)
nr z- 0 = 9-bit with sign in LSB of postbyte(s) —256 <n < 255
111rrOzs —r; ; 1 = 16-bit -32,768 < n < 65,535
’ if z=s =1, 16-bit offset indexed-indirect (see below)
r can specify X, Y, SP, or PC
16-bit offset indexed-indirect
111r011 [n.1] rr can specify X, Y, SP, or PC -32,768 < n < 65,535
Auto pre-decrement/increment or auto post-decrement/increment;
p = pre-(0) or post-(1), n=-8to -1, +1 to +8
r can specify X, Y, or SP (PC not a valid choice)
n—r n,+r +8 = 0111
rrlpnnnn n,r—
n,r+ +1 = 0000
-1=1111
-8 = 1000
Accumulator offset (unsigned 8-bit or 16-bit)
aa-00=A
AT 01=B
111rrlaa [B): 10 = D (16-bit)
' 11 = see accumulator D offset indexed-indirect
r can specify X, Y, SP, or PC
Accumulator D offset indexed-indirect
1ilrrill [D.1] r can specify X, Y, SP, or PC

Reference Manual

CPU12 — Rev. 2.0

44

Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes

All indexed addressing modes use a 16-bit CPU register and additional
information to create an effective address. In most cases the effective
address specifies the memory location affected by the operation. In
some variations of indexed addressing, the effective address specifies
the location of a value that points to the memory location affected by the
operation.

Indexed addressing mode instructions use a postbyte to specify index
registers (X and Y), stack pointer (SP), or program counter (PC) as the
base index register and to further classify the way the effective address
Is formed. A special group of instructions cause this calculated effective
address to be loaded into an index register for further calculations:

* Load stack pointer with effective address (LEAS)
e Load X with effective address (LEAX)
e Load Y with effective address (LEAY)

3.10.1 5-Bit Constant Offset Indexed Addressing

CPU12 — Rev. 2.0

This indexed addressing mode uses a 5-bit signed offset which is
included in the instruction postbyte. This short offset is added to the base
index register (X, Y, SP, or PC) to form the effective address of the
memory location that will be affected by the instruction. This gives a
range of -16 through +15 from the value in the base index register.
Although other indexed addressing modes allow 9- or 16-bit offsets,
those modes also require additional extension bytes in the instruction for
this extra information. The majority of indexed instructions in real
programs use offsets that fit in the shortest 5-bit form of indexed
addressing.

Examples:
LDAA 0, X
STAB -8,Y

For these examples, assume X has a value of $1000 and Y has a value
of $2000 before execution. The 5-bit constant offset mode does not
change the value in the index register, so X will still be $1000 and Y will
still be $2000 after execution of these instructions. In the first example,
A will be loaded with the value from address $1000. In the second
example, the value from the B accumulator will be stored at address
$1FF8 ($2000 —$8).

Reference Manual

MOTOROLA

Addressing Modes 45

Addressing Modes

3.10.2 9-Bit Constant Offset Indexed Addressing

NOTE:

This indexed addressing mode uses a 9-bit signed offset which is added
to the base index register (X, Y, SP, or PC) to form the effective address
of the memory location affected by the instruction. This gives a range of
-256 through +255 from the value in the base index register. The most
significant bit (sign bit) of the offset is included in the instruction postbyte
and the remaining eight bits are provided as an extension byte after the
instruction postbyte in the instruction flow.

Examples:
LDAA $FF, X
LDAB -20,Y

For these examples, assume X is $1000 and Y is $2000 before
execution of these instructions.

These instructions do not alter the index registers so they will still be
$1000 and $2000, respectively, after the instructions.

The first instruction will load A with the value from address $10FF and
the second instruction will load B with the value from address $1FEC.

This variation of the indexed addressing mode in the CPU12 is similar to
the M68HC11 indexed addressing mode, but is functionally enhanced.
The M68HC11 CPU provides for unsigned 8-bit constant offset indexing
from X or Y, and use of Y requires an extra instruction byte and thus, an
extra execution cycle. The 9-bit signed offset used in the CPU12 covers
the same range of positive offsets as the M68HC11, and adds negative
offset capability. The CPU12 can use X, Y, SP, or PC as the base index
register.

3.10.3 16-Bit Constant Offset Indexed Addressing

Reference Manual

This indexed addressing mode uses a 16-bit offset which is added to the
base index register (X, Y, SP, or PC) to form the effective address of the
memory location affected by the instruction. This allows access to any
address in the 64-Kbyte address space. Since the address bus and the
offset are both 16 bits, it does not matter whether the offset value is
considered to be a signed or an unsigned value ($FFFF may be thought
of as +65,535 or as -1). The 16-bit offset is provided as two extension
bytes after the instruction postbyte in the instruction flow.

CPU12 — Rev. 2.0

46

Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes

3.10.4 16-Bit Constant Indirect Indexed Addressing

This indexed addressing mode adds a 16-bit instruction-supplied offset
to the base index register to form the address of a memory location that
contains a pointer to the memory location affected by the instruction. The
instruction itself does not point to the address of the memory location to
be acted upon, but rather to the location of a pointer to the address to be
acted on. The square brackets distinguish this addressing mode from
16-bit constant offset indexing.

Example:
LDAA [10, X]

In this example, X holds the base address of a table of pointers. Assume
that X has an initial value of $1000, and that the value $2000 is stored at
addresses $100A and $100B. The instruction first adds the value 10 to
the value in X to form the address $100A. Next, an address pointer
($2000) is fetched from memory at $100A. Then, the value stored in
location $2000 is read and loaded into the A accumulator.

3.10.5 Auto Pre/Post Decrement/Increment Indexed Addressing

CPU12 — Rev. 2.0

This indexed addressing mode provides four ways to automatically
change the value in a base index register as a part of instruction
execution. The index register can be incremented or decremented by an
integer value either before or after indexing takes place. The base index
register may be X, Y, or SP. (Auto-modify modes would not make sense
on PC))

Pre-decrement and pre-increment versions of the addressing mode
adjust the value of the index register before accessing the memory
location affected by the instruction — the index register retains the
changed value after the instruction executes. Post-decrement and
post-increment versions of the addressing mode use the initial value in
the index register to access the memory location affected by the
instruction, then change the value of the index register.

The CPU12 allows the index register to be incremented or decremented
by any integer value in the ranges —8 through —1 or 1 through 8. The
value need not be related to the size of the operand for the current
instruction. These instructions can be used to incorporate an index
adjustment into an existing instruction rather than using an additional

Reference Manual

MOTOROLA

Addressing Modes a7

Addressing Modes

Reference Manual

instruction and increasing execution time. This addressing mode is also
used to perform operations on a series of data structures in memory.

When an LEAS, LEAX, or LEAY instruction is executed using this
addressing mode, and the operation modifies the index register that is
being loaded, the final value in the register is the value that would have
been used to access a memory operand. (Premodification is seen in the
result but postmodification is not.)

Examples:
STAA 1,-SP ; equi val ent to PSHA
STX 2, -SP ;equi val ent to PSHX
LDX 2, SP+ ;equi val ent to PULX
LDAA 1, SP+ ;equi val ent to PULA

For a “last-used” type of stack like the CPU12 stack, these four examples
are equivalent to common push and pull instructions.

For a “next-available” stack like the M6BHC11 stack, push A onto stack
(PSHA) is equivalent to store accumulator A (STAA) 1,SP-and pull A
from stack (PULA) is equivalent to load accumulator A (LDAA) 1,+SP.
However, in the M68HC11, 16-bit operations like push register X onto
stack (PSHX) and pull register X from stack (PULX) require multiple
instructions to decrement the SP by one, then store X, then decrement
SP by one again.

In the STAA 1,-SP example, the stack pointer is pre-decremented by
one and then A is stored to the address contained in the stack pointer.
Similarly the LDX 2,SP+ first loads X from the address in the stack
pointer, then post-increments SP by two.

Example:
MOVW 2, X+, 4, +Y

This example demonstrates how to work with data structures larger than
bytes and words. With this instruction in a program loop, it is possible to
move words of data from a list having one word per entry into a second
table that has four bytes per table element. In this example the source
pointer is updated after the data is read from memory (post-increment)
while the destination pointer is updated before it is used to access
memory (pre-increment).

CPU12 — Rev. 2.0

48

Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes

3.10.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the
values in the base index register and an unsigned offset in one of the
accumulators. The value in the index register itself is not changed. The
index register can be X, Y, SP, or PC and the accumulator can be either
of the 8-bit accumulators (A or B) or the 16-bit D accumulator.

Example:
LDAA B, X

This instruction internally adds B to X to form the address from which A
will be loaded. B and X are not changed by this instruction. This example
is similar to the following 2-instruction combination in an M68HC11.

Examples:
ABX
LDAA 0, X

However, this 2-instruction sequence alters the index register. If this
seqguence was part of a loop where B changed on each pass, the index
register would have to be reloaded with the reference value on each loop
pass. The use of LDAA B,X is more efficient in the CPU12.

3.10.7 Accumulator D Indirect Indexed Addressing

CPU12 — Rev. 2.0

This indexed addressing mode adds the value in the D accumulator to
the value in the base index register to form the address of a memory
location that contains a pointer to the memory location affected by the
instruction. The instruction operand does not point to the address of the
memory location to be acted upon, but rather to the location of a pointer
to the address to be acted upon. The square brackets distinguish this
addressing mode from D accumulator offset indexing.

Examples:
JwP [D, PC]
coil DC. W PLACE1
a2 DC. W PLACE2
a3 DC. PLACES

This example is a computed GOTO. The values beginning at GO1 are
addresses of potential destinations of the jump (JMP) instruction. At the
time the JMP [D,PC] instruction is executed, PC points to the address

Reference Manual

MOTOROLA

Addressing Modes 49

Addressing Modes

GO1, and D holds one of the values $0000, $0002, or $0004
(determined by the program some time before the JMP).

Assume that the value in D is $0002. The JMP instruction adds the
values in D and PC to form the address of GO2. Next the CPU reads the
address PLACEZ2 from memory at GO2 and jumps to PLACE2. The
locations of PLACE1 through PLACES3 were known at the time of
program assembly but the destination of the JMP depends upon the
value in D computed during program execution.

3.11 Instructions Using Multiple Modes

Several CPU12 instructions use more than one addressing mode in the
course of execution.

3.11.1 Move Instructions

Reference Manual

Move instructions use separate addressing modes to access the source
and destination of a move. There are move variations for most
combinations of immediate, extended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are
those with an immediate mode destination (the operand of an immediate
mode instruction is data, not an address). For indexed moves, the
reference index register may be X, Y, SP, or PC.

Move instructions do not support indirect modes, 9-bit, or 16-bit offset
modes requiring extra extension bytes. There are special considerations
when using PC-relative addressing with move instructions.

PC-relative addressing uses the address of the location immediately
following the last byte of object code for the current instruction as a
reference point. The CPU12 normally corrects for queue offset and for
instruction alignment so that queue operation is transparent to the user.
However, move instructions pose three special problems:

1. Some moves use an indexed source and an indexed destination.

2. Some moves have object code that is too long to fit in the queue
all at one time, so the PC value changes during execution.

3. All moves do not have the indexed postbyte as the last byte of
object code.

CPU12 — Rev. 2.0

50

Addressing Modes MOTOROLA

NOTE:

CPU12 — Rev. 2.0

Addressing Modes
Instructions Using Multiple Modes

These cases are not handled by automatic queue pointer maintenance,
but it is still possible to use PC-relative indexing with move instructions
by providing for PC offsets in source code.

Table 3-3 shows PC offsets from the location immediately following the
current instruction by addressing mode.

Table 3-3. PC Offsets for MOVE Instructions

MOVE Instruction Addressing Modes Offset Value
IMM O IDX +1
EXT O IDX +2
MOVB IDX O EXT -2
IDX O IDX -1 for first operand
+1 for second operand
IMM O IDX +2
EXT O IDX +2
MOVW IDX O EXT -2
IDX O IDX —1 for first operand
+1 for second operand
Example:
1000 18 09 C2 20 00 MOVB $2000 2, PC

Moves a byte of data from $2000 to $1009

The expected location of the PC = $1005. The offset = +2.
[1005 + 2 (for 2,PC) + 2 (for correction) = 1009]

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the
indexed postbyte for 2,PC (without correction).

The Motorola MCUasm assembler produces corrected object code for
PC-relative moves (18 09 CO 20 00 for the example shown).

Instead of assembling the 2,PC as C2, the correction has been applied
to make it CO. Check whether an assembler makes the correction before
using PC-relative moves.

Reference Manual

MOTOROLA

Addressing Modes 51

Addressing Modes

3.11.2 Bit Manipulation Instructions

Bit manipulation instructions use either a combination of two or a
combination of three addressing modes.

The clear bits in memory (BCLR) and set bits in memory (BSET)
instructions use an 8-bit mask to determine which bits in a memory byte
are to be changed. The mask must be supplied with the instruction as an
immediate mode value. The memory location to be modified can be
specified by means of direct, extended, or indexed addressing modes.

The branch if bits cleared (BRCLR) and branch if bits set (BRSET)
instructions use an 8-bit mask to test the states of bits in a memory byte.
The mask is supplied with the instruction as an immediate mode value.
The memory location to be tested is specified by means of direct,
extended, or indexed addressing modes. Relative addressing mode is
used to determine the branch address. A signed 8-bit offset must be
supplied with the instruction.

3.12 Addressing More than 64 Kbytes

Reference Manual

Some M68HC12 devices incorporate hardware that supports
addressing a larger memory space than the standard 64 Kbytes. The
expanded memory system uses fast on-chip logic to implement a
transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching
scheme instead of a large linear address space. In systems with large
linear address spaces, instructions require more bits of information to
address a memory location, and CPU overhead is greater. Other
advantages include the ability to change the size of system memory and
the ability to use various types of external memory.

However, the add-on bank switching schemes used in other
microcontrollers have known weaknesses. These include the cost of
external glue logic, increased programming overhead to change banks,
and the need to disable interrupts while banks are switched.

The M68HC12 system requires no external glue logic. Bank switching
overhead is reduced by implementing control logic in the MCU.
Interrupts do not need to be disabled during switching because switching

CPU12 — Rev. 2.0

52

Addressing Modes MOTOROLA

Addressing Modes
Addressing More than 64 Kbytes

tasks are incorporated in special instructions that greatly simplify
program access to extended memory.

MCUs with expanded memory treat the 16 Kbytes of memory space
from $8000 to $BFFF as a program memory window.
Expanded-memory devices also have an 8-bit program page register
(PPAGE), which allows up to 256 16-Kbyte program memory pages to
be switched into and out of the program memory window. This provides
for up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes call subroutine in expanded memory
(CALL) and return from call (RTC) instructions, which greatly simplify the
use of expanded memory space. These instructions also execute
correctly on devices that do not have expanded-memory addressing
capability, thus providing for portable code.

The CALL instruction is similar to the jump-to-subroutine (JSR)
instruction. When CALL is executed, the current value in PPAGE is
pushed onto the stack with a return address, and a new
instruction-supplied value is written to PPAGE. This value selects the
page the called subroutine resides upon and can be considered part of
the effective address. For all addressing mode variations except indexed
indirect modes, the new page value is provided by an immediate
operand in the instruction. For indexed indirect variations of CALL, a
pointer specifies memory locations where the new page value and the
address of the called subroutine are stored. Use of indirect addressing
for both the page value and the address within the page frees the
program from keeping track of explicit values for either address.

The RTC instruction restores the saved program page value and the
return address from the stack. This causes execution to resume at the
next instruction after the original CALL instruction.

Refer to Section 10. Memory Expansion for a detailed discussion of
memory expansion.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Addressing Modes 53

Addressing Modes

Reference Manual CPU12 — Rev. 2.0

54 Addressing Modes MOTOROLA

Reference Manual — CPU12

4.1 Contents

4.2 Introduction

CPU12 — Rev. 2.0

Section 4. Instruction Queue

4.2 Introduction. 55
4.3 QueueDescription 56
4.4 Data Movementinthe Queue.......................... 57
44.1 No Movement. 57
4.4.2 Latch DatafromBus. 57
4.4.3 Advance and Load fromDataBus.................... 57
4.4.4 Advance and Load from Buffer. 57
45 ChangesinExecutionFlow 58
45.1 EXceptions 58
45.2 Subroutines 59
45.3 Branches 60
45.3.1 ShortBranches 60
45.3.2 LongBranches. 61
45.3.3 Bit Condition Branches 62
45.3.4 Loop Primitives 62
45.4 JUMPS. .o 62

The CPU12 uses an instruction queue to increase execution speed. This
section describes queue operation during normal program execution
and changes in execution flow. These concepts augment the
descriptions of instructions and cycle-by-cycle instruction execution in
subsequent sections, but it is important to note that queue operation is
automatic, and generally transparent to the user.

The material in this section is general. Section 6. Instruction Glossary
contains detailed information concerning cycle-by-cycle execution of
each instruction. Section 8. Development and Debug Support

Reference Manual

MOTOROLA

Instruction Queue 55

Instruction Queue

contains detailed information about tracking queue operation and
instruction execution.

4.3 Queue Description

Reference Manual

The fetching mechanism in the CPU12 is best described as a queue
rather than as a pipeline. Queue logic fetches program information and
positions it for execution, but instructions are executed sequentially. A
typical pipelined central processor unit (CPU) can execute more than
one instruction at the same time, but interactions between the prefetch
and execution mechanisms can make tracking and debugging difficult.
The CPU12 thus gains the advantages of independent fetches, yet
maintains a straightforward relationship between bus and execution
cycles.

There are two 16-bit queue stages and one 16-bit buffer. Program
information is fetched in aligned 16-bit words. Unless buffering is
required, program information is first queued into stage 1, then
advanced to stage 2 for execution.

At least two words of program information are available to the CPU when
execution begins. The first byte of object code is in either the even or odd
half of the word in stage 2, and at least two more bytes of object code
are in the queue.

Queue logic manages the position of program information so that the
CPU itself does not deal with alignment. As it is executed, each
instruction initiates at least enough program word fetches to replace its
own object code in the queue.

The buffer is used when a program word arrives before the queue can
advance. This occurs during execution of single-byte and odd-aligned
instructions. For instance, the queue cannot advance after an aligned,
single-byte instruction is executed, because the first byte of the next
instruction is also in stage 2. In these cases, information is latched into
the buffer until the queue can advance.

Two external pins, IPIPE[1:0], provide time-multiplexed information
about data movement in the queue and instruction execution. Decoding
and use of these signals is discussed in Section 8. Development and
Debug Support.

CPU12 — Rev. 2.0

56

Instruction Queue MOTOROLA

Instruction Queue
Data Movement in the Queue

4.4 Data Movement in the Queue

4.4.1 No Movement

All queue operations are combinations of four basic queue movement
cycles. Descriptions of each of these cycles follows. Queue movement
cycles are only one factor in instruction execution time and should not be
confused with bus cycles.

There is no data movement in the instruction queue during the cycle.
This occurs during execution of instructions that must perform a number
of internal operations, such as division instructions.

4.4.2 Latch Data from Bus

All instructions initiate fetches to refill the queue as execution proceeds.
However, a number of conditions, including instruction alignment and
the length of previous instructions, affect when the queue advances. If
the queue is not ready to advance when fetched information arrives, the
information is latched into the buffer. Later, when the queue does
advance, stage 1 is refilled from the buffer. If more than one latch cycle
occurs before the queue advances, the buffer is filled on the first latch
event and subsequent latch events are ignored until the queue
advances.

4.4.3 Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, and stage 1 is loaded
with a word of program information from the data bus. The information
was requested two bus cycles earlier but has only become available this
cycle, due to access delay.

4.4.4 Advance and Load from Buffer

CPU12 — Rev. 2.0

The content of queue stage 1 advances to stage 2, and stage 1 is loaded
with a word of program information from the buffer. The information in
the buffer was latched from the data bus during a previous cycle
because the queue was not ready to advance when it arrived.

Reference Manual

MOTOROLA

Instruction Queue 57

Instruction Queue

4.5 Changes in Execution Flow

4.5.1 Exceptions

Reference Manual

During normal instruction execution, queue operations proceed as a
continuous sequence of queue movement cycles. However, situations
arise which call for changes in flow. These changes are categorized as
resets, interrupts, subroutine calls, conditional branches, and jumps.
Generally speaking, resets and interrupts are considered to be related to
events outside the current program context that require special
processing, while subroutine calls, branches, and jumps are considered
to be elements of program structure.

During design, great care is taken to assure that the mechanism that
increases instruction throughput during normal program execution does
not cause bottlenecks during changes of program flow, but internal
queue operation is largely transparent to the user. The following
information is provided to enhance subsequent descriptions of
instruction execution.

Exceptions are events that require processing outside the normal flow of
instruction execution. CPU12 exceptions include four types of resets:

1. Unimplemented opcode trap
2. Software interrupt instruction
3. X-bit interrupts

4. |-bit interrupts

All exceptions use the same microcode, but the CPU follows different
execution paths for each type of exception.

CPU12 exception handling is designed to minimize the effect of queue
operation on context switching. Thus, an exception vector fetch is the
first part of exception processing, and fetches to refill the queue from the
address pointed to by the vector are interleaved with the stacking
operations that preserve context, so that program access time does not
delay the switch. Referto Section 7. Exception Processing for detailed
information.

CPU12 — Rev. 2.0

58

Instruction Queue MOTOROLA

45.2 Subroutines

CPU12 — Rev. 2.0

Instruction Queue
Changes in Execution Flow

The CPU12 can branch to (BSR), jump to (JSR), or call (CALL)
subroutines. BSR and JSR are used to access subroutines in the normal
64-Kbyte address space. The CALL instruction is intended for use in
MCUs with expanded memory capability.

BSR uses relative addressing mode to generate the effective address of
the subroutine, while JSR can use various other addressing modes.
Both instructions calculate a return address, stack the address, then
perform three program word fetches to refill the queue. The first two
words fetched are queued during the second and third cycles of the
sequence. The third fetch cycle is performed in anticipation of a queue
advance, which may occur during the fourth cycle of the sequence. If the
gueue is not yet ready to advance at that time, the third word of program
information is held in the buffer.

Subroutines in the normal 64-Kbyte address space are terminated with
a return-from-subroutine (RTS) instruction. RTS unstacks the return
address, then performs three program word fetches from that address to
refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of
addresses from $8000 to $BFFF as a memory window. An 8-bit PPAGE
register switches memory pages into and out of the window. When CALL
Is executed, a return address is calculated, then it and the current
PPAGE value are stacked, and a new instruction-supplied value is
written to PPAGE. The subroutine address is calculated, then three
program word fetches are made from that address.

The return-from-call (RTC) instruction is used to terminate subroutines
in expanded memory. RTC unstacks the PPAGE value and the return
address, then performs three program word fetches from that address to
refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space,
thus providing for portable code. However, since extra execution cycles
are required, routinely substituting CALL/RTC for JSR/RTS is not
recommended.

Reference Manual

MOTOROLA

Instruction Queue 59

Instruction Queue

45.3 Branches

45.3.1 Short Branches

Reference Manual

Branch instructions cause execution flow to change when specific
pre-conditions exist. The CPU12 instruction set includes:

e Short conditional branches
* Long conditional branches

* Bit-condition branches

Types and conditions of branch instructions are described in

5.20 Branch Instructions. All branch instructions affect the queue
similarly, but there are differences in overall cycle counts between the
various types. Loop primitive instructions are a special type of branch
instruction used to implement counter-based loops.

Branch instructions have two execution cases:

1. The branch condition is satisfied, and a change of flow takes
place.

2. The branch condition is not satisfied, and no change of flow
occurs.

The “not-taken” case for short branches is simple. Since the instruction
consists of a single word containing both an opcode and an 8-bit offset,
the queue advances, another program word is fetched, and execution
continues with the next instruction.

The “taken” case for short branches requires that the queue be refilled
so that execution can continue at a new address. First, the effective
address of the destination is calculated using the relative offset in the
instruction. Then, the address is loaded into the program counter, and
the CPU performs three program word fetches at the new address. The
first two words fetched are loaded into the instruction queue during the
second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during
the first cycle of the next instruction. If the queue is not yet ready to
advance at that time, the third word of program information is held in the
buffer.

CPU12 — Rev. 2.0

60

Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow

4.5.3.2 Long Branches

The “not-taken” case for all long branches requires three cycles, while
the “taken” case requires four cycles. This is due to differences in the
amount of program information needed to fill the queue.

Long branch instructions begin with a $18 prebyte which indicates that
the opcode is on page 2 of the opcode map. The CPU12 treats the
prebyte as a special one-byte instruction. If the prebyte is not aligned,
the first cycle is used to perform a program word access; if the prebyte
Is aligned, the first cycle is used to perform a free cycle. The first cycle
for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional
cycles make the effects of byte-sized and misaligned instructions
consistent with those of aligned word-length instructions. Optional cycles
are always performed, but serve different purposes determined by
instruction alignment. Program information is always fetched as aligned
16-bit words. When an instruction consists of an odd number of bytes,
and the first byte is aligned with an even byte boundary, an optional cycle
Is used to make an additional program word access that maintains
queue order. In all other cases, the optional cycle appears as a free
cycle.

In the “not-taken” case, the queue must advance so that execution can
continue with the next instruction. Two cycles are used to refill the
queue. Alignment determines how the second of these cycles is used.

In the “taken” case, the effective address of the branch is calculated
using the 16-bit relative offset contained in the second word of the
instruction. This address is loaded into the program counter, then the
CPU performs three program word fetches at the new address. The first
two words fetched are loaded into the instruction queue during the
second and third cycles of the sequence. The third fetch cycle is
performed in anticipation of a queue advance, which may occur during
the first cycle of the next instruction. If the queue is not yet ready to
advance, the third word of program information is held in the buffer.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Instruction Queue 61

Instruction Queue

4.5.3.3 Bit Condition Branches

4.5.3.4 Loop Primitives

4.5.4 Jumps

Reference Manual

Bit condition branch instructions read a location in memory, and branch
if the bits in that location are in a certain state. These instructions can
use direct, extended, or indexed addressing modes. Indexed operations
require varying amounts of information to determine the effective
address, so instruction length varies according to the mode used, which
in turn affects the amount of program information fetched. To shorten
execution time, these branches perform one program word fetch in
anticipation of the “taken” case. The data from this fetch is overwritten by
subsequent fetches in the “not-taken” case.

The loop primitive instructions test a counter value in a register or
accumulator and branch to an address specified by a 9-bit relative offset
contained in the instruction if a specified pre-condition is met. There are
auto-increment and auto-decrement versions of the instructions. The
test and increment/decrement operations are performed on internal CPU
registers, and require no additional program information. To shorten
execution time, these branches perform one program word fetch in
anticipation of the “taken” case. The data from this fetch is overwritten by
subsequent fetches in the “not-taken” case. The “taken” case performs
two additional program word fetches at the new address. In the
“not-taken” case, the queue must advance so that execution can
continue with the next instruction. Two cycles are used to refill the
gqueue.

Jump (JMP) is the simplest change of flow instruction. JMP can use
extended or indexed addressing. Indexed operations require varying
amounts of information to determine the effective address, so instruction
length varies according to the mode used, which in turn affects the
amount of program information fetched. All forms of JMP perform three
program word fetches at the new address. The first two words fetched
are loaded into the instruction queue during the second and third cycles
of the sequence. The third fetch cycle is performed in anticipation of a
gqueue advance, which may occur during the first cycle of the next
instruction. If the queue is not yet ready to advance, the third word of
program information is held in the buffer.

CPU12 — Rev. 2.0

62

Instruction Queue MOTOROLA

Reference Manual — CPU12

5.1 Contents

CPU12 — Rev. 2.0

Section 5. Instruction Set Overview

5.2 Introduction. 64
5.3 Instruction Set Description 65
5.4 Load and Store Instructions 66
5.5 Transfer and Exchange Instructions. 67
56 Movelnstructions 68
5.7 Addition and Subtraction Instructions. 69
5.8 Binary-Coded Decimal Instructions 70
5.9 Decrement and Increment Instructions. 71
5.10 Compare and Test Instructions. 72
5.11 Boolean LogicInstructions 73
5.12 Clear, Complement, and Negate Instructions. 74
5.13 Multiplication and Division Instructions. 75
5.14 Bit Test and Manipulation Instructions 76
5.15 Shift and Rotate Instructions. 77
5.16 Fuzzy LogicInstructions. 78
5.16.1 Fuzzy Logic Membership Instruction 78
5.16.2 Fuzzy Logic Rule Evaluation Instructions. 78
5.16.3 Fuzzy Logic Averaging Instruction 79
5.17 Maximum and Minimum Instructions 81
5.18 Multiply and Accumulate Instruction. 82
5.19 Table Interpolation Instructions. 82
5.20 BranchlInstructions. 83
5.20.1 Short Branch Instructions. 84
5.20.2 Long Branchlinstructions 85
5.20.3 Bit Condition Branch Instructions. 86

Reference Manual

MOTOROLA

Instruction Set Overview 63

Instruction Set Overview

5.21 Loop Primitive Instructions 87
5.22 Jump and Subroutine Instructions 88
5.23 Interrupt Instructions. 89
5.24 Index Manipulation Instructions 91
5.25 Stacking Instructions. 92
5.26 Pointer and Index Calculation Instructions 93
5.27 Condition Code Instructions 94
5.28 Stopand Wait Instructions 95
5.29 Background Mode and Null Operations 96

5.2 Introduction

This section contains general information about the central processor
unit (CPU12) instruction set. It is organized into instruction categories
grouped by function.

Reference Manual CPU12 — Rev. 2.0

64 Instruction Set Overview MOTOROLA

Instruction Set Overview
Instruction Set Description

5.3 Instruction Set Description

CPU12 — Rev. 2.0

CPU12 instructions are a superset of the M68HC11 instruction set. Code
written for an M68HC11 can be reassembled and run on a CPU12 with
no changes. The CPU12 provides expanded functionality and increased
code efficiency.

In the M68HC12 architecture, all memory and input/output (1/O) are
mapped in a common 64-Kbyte address space (memory-mapped 1/O).
This allows the same set of instructions to be used to access memory,
I/O, and control registers. General-purpose load, store, transfer,
exchange, and move instructions facilitate movement of data to and from
memory and peripherals.

The CPU12 has a full set of 8-bit and 16-bit mathematical instructions.
There are instructions for signed and unsigned arithmetic, division, and
multiplication with 8-bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations,
indexing, binary-coded decimal (BCD) calculation, and condition code
register manipulation. There are also dedicated instructions for multiply
and accumulate operations, table interpolation, and specialized fuzzy
logic operations that involve mathematical calculations.

Refer to Section 6. Instruction Glossary for detailed information about
individual instructions. Appendix A. Instruction Reference contains
quick-reference material, including an opcode map and postbyte
encoding for indexed addressing, transfer/exchange instructions, and
loop primitive instructions.

Reference Manual

MOTOROLA

Instruction Set Overview 65

Instruction Set Overview

5.4 Load and Store Instructions

Load instructions copy memory content into an accumulator or register.
Memory content is not changed by the operation. Load instructions (but
not LEA _instructions) affect condition code bits so no separate test
instructions are needed to check the loaded values for negative or 0

conditions.

Store instructions copy the content of a CPU register to memory.
Register/accumulator content is not changed by the operation. Store
instructions automatically update the N and Z condition code bits, which
can eliminate the need for a separate test instruction in some programs.

Table 5-1 is a summary of load and store instructions.

Table 5-1. Load and Store Instructions

Mnemonic Function Operation
Load Instructions
LDAA Load A M) O A
LDAB Load B (M)O B
LDD Load D M:M+1)0 (A:B)
LDS Load SP M:M+1)0O SP
LDX Load index register X M:M+1)0O X
LDY Load index register Y M:M+1)0OYVY
LEAS Load effective address into SP Effective address O SP
LEAX Load effective address into X Effective address O X
LEAY Load effective address into Y Effective address O Y
Store Instructions
STAA Store A (A)O M
STAB Store B (B)0 ™M
STD Store D AOM,BOM+1
STS Store SP (SPHOM:M+1
STX Store X xX)OM:M+1
STY Store Y MOM:M+1

Reference Manual

CPU12 — Rev. 2.0

66

Instruction Set Overview

MOTOROLA

Instruction Set Overview
Transfer and Exchange Instructions

5.5 Transfer and Exchange Instructions

Transfer instructions copy the content of a register or accumulator into
another register or accumulator. Source content is not changed by the
operation. Transfer register to register (TFR) is a universal transfer
instruction, but other mnemonics are accepted for compatibility with the
M68HC11. The transfer A to B (TAB) and transfer B to A (TBA)
instructions affectthe N, Z, and V condition code bits in the same way as
M68HC11 instructions. The TFR instruction does not affect the condition
code bits.

Exchange instructions exchange the contents of pairs of registers or
accumulators.

The sign extend 8-bit operand (SEX) instruction is a special case of the
universal transfer instruction that is used to sign extend 8-bit two’s
complement numbers so that they can be used in 16-bit operations. The
8-bit number is copied from accumulator A, accumulator B, or the
condition code register to accumulator D, the X index register, the Y
index register, or the stack pointer. All the bits in the upper byte of the
16-bit result are given the value of the most-significant bit (MSB) of the
8-bit number.

Section 6. Instruction Glossary contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2 is a summary of transfer and exchange instructions.

Table 5-2. Transfer and Exchange Instructions

Mnemonic Function Operation
Transfer Instructions
TAB Transfer Ato B (A)O B
TAP Transfer A to CCR (A) O CCR
TBA Transfer B to A (B)O A
TER Transfer _register (A,B,CCR, D, X, Y,orSP)
to register A, B,CCR, D, X, Y, or SP
TPA Transfer CCR to A (CCR)O A
TSX Transfer SP to X (sP)O X
TSY Transfer SP to Y (shPyo vy
TXS Transfer X to SP X)O spP
TYS Transfer Y to SP (Y)O spP
CPU12 —Rev. 2.0 Reference Manual

MOTOROLA Instruction Set Overview 67

Instruction Set Overview

Table 5-2. Transfer and Exchange Instructions (Continued)

Mnemonic ‘ Function ‘ Operation
Exchange Instructions
EXG Exchange_ register (A,B,CCR, D, X, Y, or SP) =
to register (A, B, CCR, D, X, Y, or SP)
XGDX Exchange D with X D) = (X)
XGDY Exchange D with Y D) = (Y)
Sign Extension Instruction
SEX Si%tnoepxetf:f y (A,B, CCR) 00 D, X, Y, or SP

5.6 Move Instructions

Move instructions move data bytes or words from a source

(M1, M : M +1,) to a destination (M,, M : M +1,) in memory. Six
combinations of immediate, extended, and indexed addressing are
allowed to specify source and destination addresses (IMM O EXT,
IMM O IDX, EXT O EXT, EXT O IDX, IDX O EXT, IDX O IDX).

Table 5-3 shows byte and word move instructions.

Table 5-3. Move Instructions

Mnemonic Function Operation
MOVB Move byte (8-bit) (M) O M,
MOVW Move word (16-bit) M:M+1)0M:M+1,
Reference Manual CPU12 —Rev. 2.0

68 Instruction Set Overview MOTOROLA

5.7 Addition and Subtraction Instructions

CPU12 — Rev. 2.0

Instruction Set Overview
Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit addition can be performed between
registers or between registers and memory. Special instructions support
index calculation. Instructions that add the condition code register (CCR)
carry bit facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed
between registers or between registers and memory. Special

instructions support index calculation. Instructions that subtract the CCR
carry bit facilitate multiple precision computation. Refer to Table 5-4 for
addition and subtraction instructions.

Table 5-4. Addition and Subtraction Instructions

Mnemonic Function Operation
Addition Instructions
ABA Add B to A (A)+(B)O A
ABX Add B to X (B) +(X) O X
ABY Add Bto Y (B)+(Y)O Y
ADCA Add with carry to A A+M+COA
ADCB Add with carry to B B)+M+CO B
ADDA Add without carry to A A+M)O A
ADDB Add without carry to B B)+(M)d B
ADDD Add to D (AB)+(M:M+1)0 A:B
Subtraction Instructions

SBA Subtract B from A A)-B)O A
SBCA Subtract with borrow from A A -(M)y—CcO A
SBCB Subtract with borrow from B B)-M-CcO B
SUBA Subtract memory from A A)-(M)yO A
SUBB Subtract memory from B B)-MMyO B
SUBD Subtract memory from D (A:B) DO)y-M:M+1)O D

Reference Manual

MOTOROLA

Instruction Set Overview

69

Instruction Set Overview

5.8 Binary-Coded Decimal Instructions

To add binary-coded decimal (BCD) operands, use addition instructions
that set the half-carry bit in the CCR, then adjust the result with the
decimal adjust A (DAA) instruction. Table 5-5 is a summary of
instructions that can be used to perform BCD operations.

Table 5-5. BCD Instructions

Mnemonic Function Operation
ABA Add B to A (A)+(B)O A
ADCA Add with carry to A AY+(M)+CO A
ADCB Add with carry to B B)+(M)+CO B
ADDA Add memory to A A+M)OA
ADDB Add memory to B B)+(M)O B
DAA Decimal adjust A (A)10
Reference Manual CPU12 —Rev. 2.0

70 Instruction Set Overview MOTOROLA

Instruction Set Overview

Decrement and Increment Instructions

5.9 Decrement and Increment Instructions

The decrement and increment instructions are optimized 8- and 16-bit
addition and subtraction operations. They are generally used to
implement counters. Because they do not affect the carry bit in the CCR,
they are particularly well suited for loop counters in multiple-precision
computation routines. Refer to 5.21 Loop Primitive Instructions for
information concerning automatic counter branches. Table 5-6 is a
summary of decrement and increment instructions.

Table 5-6. Decrement and Increment Instructions

Mnemonic Function Operation
Decrement Instructions
DEC Decrement memory (M)—%010 M
DECA Decrement A (A)—%010 A
DECB Decrement B (B)—%$010 B
DES Decrement SP (SP) — $0001 O SP
DEX Decrement X (X)—$0001 0 X
DEY Decrement Y (Y)—$00010 Y
Increment Instructions
INC Increment memory (M)+$010 M
INCA Increment A (A)+3$010 A
INCB Increment B (B) +$01 0 B
INS Increment SP (SP) + $0001 O SP
INX Increment X (X) +$0001 0 X
INY Increment Y (Y)+$00010 Y

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Set Overview

71

Instruction Set Overview

5.10 Compare and Test Instructions

Reference Manual

Compare and test instructions perform subtraction between a pair of
registers or between a register and memory. The result is not stored, but
condition codes are set by the operation. These instructions are
generally used to establish conditions for branch instructions. In this
architecture, most instructions update condition code bits automatically,
So it is often unnecessary to include separate test or compare
instructions. Table 5-7 is a summary of compare and test instructions.

Table 5-7. Compare and Test Instructions

Mnemonic Function Operation
Compare Instructions
CBA Compare Ato B (A) - (B)
CMPA Compare A to memory (A) — (M)
CMPB Compare B to memory (B) — (M)
CPD Compare D to memory (16-bit) (A:B)—-(M:M+1)
CPS Compare SP to memory (16-bit) (SP)—-(M: M +1)
CPX Compare X to memory (16-bit) X)-(M: M +1)
CPY Compare Y to memory (16-bit) Y)-(M: M +1)
Test Instructions

TST Test memory for zero or minus (M) — $00
TSTA Test A for zero or minus (A) —$00
TSTB Test B for zero or minus (B) — $00

CPU12 — Rev. 2.0

72

Instruction Set Overview

MOTOROLA

Instruction Set Overview
Boolean Logic Instructions

5.11 Boolean Logic Instructions

The Boolean logic instructions perform a logic operation between an
8-bit accumulator or the CCR and a memory value. AND, OR, and
exclusive OR functions are supported. Table 5-8 summarizes logic
instructions.

Table 5-8. Boolean Logic Instructions

Mnemonic Function Operation
ANDA AND A with memory (A)e(M)O A
ANDB AND B with memory (B M)O B
ANDCC AND CCR with memory (clear CCR bits) (CCR) (M) O CCR
EORA Exclusive OR A with memory AOMDOA
EORB Exclusive OR B with memory B)oOm0oOB
ORAA OR A with memory A+M)O A
ORAB OR B with memory B)Y+(M)Od B
ORCC OR CCR with memory (set CCR bits) (CCR)+ (M) O CCR
CPU12 —Rev. 2.0 Reference Manual

MOTOROLA Instruction Set Overview 73

Instruction Set Overview

5.12 Clear, Complement, and Negate Instructions

Reference Manual

Each of the clear, complement, and negate instructions performs a
specific binary operation on a value in an accumulator or in memory.
Clear operations clear the value to 0, complement operations replace
the value with its one’s complement, and negate operations replace the
value with its two’s complement. Table 5-9 is a summary of clear,
complement, and negate instructions.

Table 5-9. Clear, Complement, and Negate Instructions

Mnemonic Function Operation
CLC Clear C bit in CCR odcC
CLI Clear | bitin CCR oo |
CLR Clear memory $000 M
CLRA Clear A $000 A
CLRB Clear B $000 B
CLv Clear V bitin CCR od Vv
COM One’s complement memory $FF-(M) O Mor (M) oM
COMA One’s complement A $FF-(A)O Aor (K) oA
COMB One’s complement B $FF - (B)O Bor (E) 0B
NEG Two’s complement memory $00 - (M) O Mor (M) +10 M
NEGA Two’s complement A $00-(A) O Aor (K) +10 A
NEGB Two’s complement B $00-(B) O Bor (E) +10 B

CPU12 — Rev. 2.0

74

Instruction Set Overview

MOTOROLA

5.13 Multiplication and Division Instructions

CPU12 — Rev. 2.0

Instruction Set Overview
Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit
multiplication. Eight-bit multiplication operations have a 16-bit product.
Sixteen-bit multiplication operations have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor,
quotient, and remainder. Extended division instructions use a 32-bit
dividend and a 16-bit divisor to produce a 16-bit quotient and a 16-bit

remainder.

Table 5-10 is a summary of multiplication and division instructions.

Table 5-10. Multiplication and Division Instructions

Mnemonic Function Operation
Multiplication Instructions
EMUL 16 by 16 multiply (unsigned) D)yx(Y)O Y:D
EMULS 16 by 16 multiply (signed) D)yx(Y)O Y:D
MUL 8 by 8 multiply (unsigned) (A)x(B)d A:B
Division Instructions

(Y :D) = (X)

EDIV 32 by 16 divide (unsigned) Quotient 0 Y
Remainder O D

(Y :D) = (X)

EDIVS 32 by 16 divide (signed) Quotient 0 Y
Remainder O D

. o D)+X)O X
FDIV 16 by 16 fractional divide Remainder O D

. o . D)+X)O X
IDIV 16 by 16 integer divide (unsigned) Remainder 0 D

. . . D)+X)O X
IDIVS 16 by 16 integer divide (signed) Remainder 0 D

Reference Manual

MOTOROLA

Instruction Set Overview

75

Instruction Set Overview

5.14 Bit Test and Manipulation Instructions

The bit test and manipulation operations use a mask value to test or
change the value of individual bits in an accumulator or in memory. Bit
test A (BITA) and bit test B (BITB) provide a convenient means of testing
bits without altering the value of either operand. Table 5-11 is a
summary of bit test and manipulation instructions.

Table 5-11. Bit Test and Manipulation Instructions

Mnemonic Function Operation
BCLR Clear bits in memory (M) « (ﬁ) oM
BITA Bit test A (A) » (M)
BITB Bit test B (B) » (M)
BSET Set bits in memory (M)+(mm) O M

Reference Manual CPU12 — Rev. 2.0

76 Instruction Set Overview MOTOROLA

5.15 Shift and Rotate Instructions

CPU12 — Rev. 2.0

Instruction Set Overview
Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes.
All pass the shifted-out bit through the C status bit to facilitate
multiple-byte operations. Because logical and arithmetic left shifts are
identical, there are no separate logical left shift operations. Logic shift left
memory (LSL) mnemonics are assembled as arithmetic shift left memory
(ASL) operations. Table 5-12 shows shift and rotate instructions.

Table 5-12. Shift and Rotate Instructions

Mnemonic ‘ Function Operation
Logical Shifts
LSL Logic shift left memory «——
LSLA Logic shift left A [TTTTTTT 40
LSLB Logic shift left B c b7 bo
<« <«
LSLD Logic shift left D (1T TT«{ T TT140
C b7 A b0 b7 B hbo
LSR Logic shift right memory R
LSRA Logic shift right A 0 »EDjjiDj%—PD
LSRB Logic shift right B ¢
—» —>
i ift ri 0O [TTH» 1T 17
LSRD Logic shift right D g bng
Arithmetic Shifts
ASL Arithmetic shift left memory <«
ASLA Arithmetic shift left A D—MO
ASLB Arithmetic shift left B ¢
ASLD Arithmetic shift left D e [T TT]e{ [T [T 40
C b7 A b0 b7 B bO
ASR Arithmetic shift right memory —
ASRA Arithmetic shift right A wm
ASRB Arithmetic shift right B b7 o ¢
Rotates
ROL Rotate left memory through carry |
ROLA Rotate left A through carry «@4—%333333;_0!@
ROLB Rotate left B through carry
ROR Rotate right memory through carry |
RORA Rotate right A through carry QW
RORB Rotate right B through carry ¢

Reference Manual

MOTOROLA

Instruction Set Overview

77

Instruction Set Overview

5.16 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient
processing of fuzzy logic operations. The descriptions of fuzzy logic
instructions given here are functional overviews. Table 5-13
summarizes the fuzzy logic instructions. Refer to Section 9. Fuzzy
Logic Support for detailed discussion.

5.16.1 Fuzzy Logic Membership Instruction

The membership function (MEM) instruction is used during the
fuzzification process. During fuzzification, current system input values
are compared against stored input membership functions to determine
the degree to which each label of each system input is true. This is
accomplished by finding the y value for the current input on a trapezoidal
membership function for each label of each system input. The MEM
instruction performs this calculation for one label of one system input. To
perform the complete fuzzification task for a system, several MEM
instructions must be executed, usually in a program loop structure.

5.16.2 Fuzzy Logic Rule Evaluation Instructions

Reference Manual

The MIN-MAX rule evaluation (REV and REVW) instructions perform
MIN-MAX rule evaluations that are central elements of a fuzzy logic
inference program. Fuzzy input values are processed using a list of rules
from the knowledge base to produce a list of fuzzy outputs. The REV
instruction treats all rules as equally important. The REVW instruction
allows each rule to have a separate weighting factor. The two rule
evaluation instructions also differ in the way rules are encoded into the
knowledge base. Because they require a number of cycles to execute,
rule evaluation instructions can be interrupted. Once the interrupt has

been serviced, instruction execution resumes at the point the interrupt
occurred.

CPU12 — Rev. 2.0

78

Instruction Set Overview MOTOROLA

Instruction Set Overview
Fuzzy Logic Instructions

5.16.3 Fuzzy Logic Averaging Instruction

CPU12 — Rev. 2.0

The calculate numerator (WAYV) instruction provides a facility for
weighted average calculations. To be usable, the fuzzy outputs
produced by rule evaluation must be defuzzified to produce a single
output value which represents the combined effect of all of the fuzzy
outputs. Fuzzy outputs correspond to the labels of a system output and
each is defined by a membership function in the knowledge base. The
CPU12 typically uses singletons for output membership functions rather
than the trapezoidal shapes used for inputs. As with inputs, the x-axis
represents the range of possible values for a system output. Singleton
membership functions consist of the x-axis position for a label of the
system output. Fuzzy outputs correspond to the y-axis height of the
corresponding output membership function. The WAV instruction
calculates the numerator and denominator sums for a weighted average
of the fuzzy outputs. Because WAV requires a number of cycles to
execute, it can be interrupted. The WAVR pseudo-instruction causes
execution to resume at the point where it was interrupted.

Table 5-13. Fuzzy Logic Instructions

Mnemonic Function Operation

H (grade) O My,
X)+40 X;(Y)+10O Y; Aunchanged

if (A) <P1or (A) > P2, then p=0, else
K= MIN [((A) — P1) x S1, (P2 — (A)) x S2, $FF]

where:
MEM Membership A = current crisp input value
function X points to a 4-byte data structure

that describes a trapezoidal membership
function as base intercept
points and slopes (P1, P2, S1, S2)
Y points at fuzzy input (RAM location)

See instruction details for special cases

Reference Manual

MOTOROLA

Instruction Set Overview 79

Instruction Set Overview

Reference Manual

Table 5-13. Fuzzy Logic Instructions (Continued)

Mnemonic

Function

Operation

REV

MIN-MAX rule
evaluation

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is
larger (MAX)

Rules are unweighted

Each rule input is an 8-bit offset
from a base address in Y
Each rule output is an 8-bit offset
from a base address in Y
$FE separates rule inputs from rule outputs
$FF terminates the rule list

REV can be interrupted

REVW

MIN-MAX rule
evaluation

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)
Store to rule outputs unless fuzzy output is

larger (MAX)

Each rule input is the 16-bit address
of a fuzzy input

Each rule output is the 16-bit address
of a fuzzy output

Address $FFFE separates rule inputs
from rule outputs

$FFFF terminates the rule list
Weights are 8-bit values in a separate table

REVW can be interrupted

WAV

Calculates numerator
(sum of products)
and denominator
(sum of weights)

for weighted average

calculation

Results are placed in
correct registers

for EDIV immediately

after WAV

B
S SFO YD
i=1

B
3 FiOX
i=1

WAVR

Resumes execution
of interrupted WAV
instruction

Recover immediate results from stack
rather than initializing them to 0.

CPU12 — Rev. 2.0

80

Instruction Set Overview

MOTOROLA

5.17 Maximum and Minimum Instructions

Instruction Set Overview
Maximum and Minimum Instructions

The maximum (MAX) and minimum (MIN) instructions are used to make
comparisons between an accumulator and a memory location. These
instructions can be used for linear programming operations, such as
simplex-method optimization, or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit
comparisons, while EMAX and EMIN instructions use accumulator D to
perform 16-bit comparisons. The result (maximum or minimum value)
can be stored in the accumulator (EMAXD, EMIND, MAXA, MINA) or the
memory address (EMAXM, EMINM, MAXM, MINM).

Table 5-14 is a summary of minimum and maximum instructions.

Table 5-14. Minimum and Maximum Instructions

Mnemonic

Function

Operation

Minimum Instructions

EMIND

MIN of two unsigned 16-bit values
result to accumulator

MIN ((D), (M :M+1))0 D

EMINM

MIN of two unsigned 16-bit values
result to memory

MIN (D), M:M+1)) O M: M+1

MINA

MIN of two unsigned 8-bit values
result to accumulator

MIN ((A), (M)) O A

MINM

MIN of two unsigned 8-bit values
result to memory

MIN ((A), (M)) O M

Maximum Instructions

EMAXD

MAX of two unsigned 16-bit values
result to accumulator

MAX ((D), (M: M +1)) 0 D

EMAXM

MAX of two unsigned 16-bit values
result to memory

MAX (D), (M:M+1))O M:M+1

MAXA

MAX of two unsigned 8-bit values
result to accumulator

MAX ((A), (M)) O A

MAXM

MAX of two unsigned 8-bit values
result to memory

MAX ((A), (M)) O M

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Set Overview

81

Instruction Set Overview

5.18 Multiply and Accumulate Instruction

The multiply and accumulate (EMACS) instruction multiplies two 16-bit
operands stored in memory and accumulates the 32-bit result in a third
memory location. EMACS can be used to implement simple digital filters
and defuzzification routines that use 16-bit operands. The WAV
instruction incorporates an 8- to 16-bit multiply and accumulate
operation that obtains a numerator for the weighted average calculation.
The EMACS instruction can automate this portion of the averaging
operation when 16-bit operands are used. Table 5-15 shows the
EMACS instruction.

Table 5-15. Multiply and Accumulate Instructions

Mnemonic Function Operation

Multiply and accumulate (signed) ((Mxy:M(x+1)) % (M(yy:M(y+1))

EMACS 16 x 16 bit 0 32 bit F(M~M+3)0 M~M+3

5.19 Table Interpolation Instructions

Reference Manual

The table interpolation instructions (TBL and ETBL) interpolate values
from tables stored in memory. Any function that can be represented as
a series of linear equations can be represented by a table of appropriate
size. Interpolation can be used for many purposes, including tabular
fuzzy logic membership functions. TBL uses 8-bit table entries and
returns an 8-bit result; ETBL uses 16-bit table entries and returns a 16-bit
result. Use of indexed addressing mode provides great flexibility in
structuring tables.

Consider each of the successive values stored in a table to be y-values
for the endpoint of a line segment. The value in the B accumulator before
instruction execution begins represents change in x from the beginning
of the line segment to the lookup point divided by total change in x from
the beginning to the end of the line segment. B is treated as an 8-bit
binary fraction with radix point left of the MSB, so each line segment is
effectively divided into 256 smaller segments. During instruction
execution, the change in y between the beginning and end of the
segment (a signed byte for TBL or a signed word for ETBL) is multiplied
by the content of the B accumulator to obtain an intermediate delta-y
term. The result (stored in the A accumulator by TBL, and in the D

CPU12 — Rev. 2.0

82

Instruction Set Overview MOTOROLA

Instruction Set Overview
Branch Instructions

accumulator by ETBL) is the y-value of the beginning point plus the
signed intermediate delta-y value. Table 5-16 shows the table
interpolation instructions.

Table 5-16. Table Interpolation Instructions

Mnemonic Function Operation
16-bit table lookup (M:M+1) +_[(B) *((M+2:M+3)
and interpolate —~(M:M+ 1) 0 D
ETBL - P : Initialize B, and index before ETBL.
(no indirect addressing . ! i
<ea> points to the first table entry (M : M + 1)
modes allowed) . .
B is fractional part of lookup value
8-bit table lookup M)+[B)x(M+1)—(M)]1O A
TBL and interpolate Initialize B, and index before TBL.
(no indirect addressing | <ea> points to the first 8-bit table entry (M)
modes allowed) B is fractional part of lookup value.

5.20 Branch Instructions

CPU12 — Rev. 2.0

Branch instructions cause a sequence to change when specific
conditions exist. The CPU12 uses three kinds of branch instructions.
These are short branches, long branches, and bit condition branches.

Branch instructions can also be classified by the type of condition that
must be satisfied in order for a branch to be taken. Some instructions
belong to more than one classification. For example:

e Unary branch instructions always execute.

« Simple branches are taken when a specific bit in the condition
code register is in a specific state as a result of a previous
operation.

» Unsigned branches are taken when comparison or test of
unsigned quantities results in a specific combination of condition
code register bits.

« Signed branches are taken when comparison or test of signed
gquantities results in a specific combination of condition code
register bits.

Reference Manual

MOTOROLA

Instruction Set Overview 83

Instruction Set Overview

5.20.1 Short Branch Instructions

Reference Manual

Short branch instructions operate this way: When a specified condition
Is met, a signed 8-bit offset is added to the value in the program counter.

Program execution continues at the new address.

The numeric range of short branch offset values is $80 (-128) to $7F
(127) from the address of the next memory location after the offset value.

Table 5-17 is a summary of the short branch instructions.

Table 5-17. Short Branch Instructions

Mnemonic Function Equation or Operation
Unary Branches
BRA Branch always =1
BRN Branch never 1=0
Simple Branches
BCC Branch if carry clear Cc=0
BCS Branch if carry set c=1
BEQ Branch if equal zZ=1
BMI Branch if minus N=1
BNE Branch if not equal Z=0
BPL Branch if plus N=0
BVC Branch if overflow clear V=0
BVS Branch if overflow set V=1
Unsigned Branches
Relation
BHI Branch if higher R>M C+7z2=0
BHS Branch if higher or same R=M C=0
BLO Branch if lower R<M Cc=1
BLS Branch if lower or same R<sM C+z=1
Signed Branches
BGE Branch if greater than or equal R=M NOV=0
BGT Branch if greater than R>M Z+(NOV)=0
BLE Branch if less than or equal R<M Z+(NOV)=1
BLT Branch if less than R <M NOV=1

CPU12 — Rev. 2.0

84

Instruction Set Overview

MOTOROLA

5.20.2 Long Branch Instructions

Instruction Set Overview
Branch Instructions

Long branch instructions operate this way: When a specified condition is
met, a signed 16-bit offset is added to the value in the program counter.
Program execution continues at the new address. Long branches are
used when large displacements between decision-making steps are

necessary.

The numeric range of long branch offset values is $8000 (—32,768) to
$7FFF (32,767) from the address of the next memory location after the
offset value. This permits branching from any location in the standard
64-Kbyte address map to any other location in the map.

Table 5-18 is a summary of the long branch instructions.

Table 5-18. Long Branch Instructions

Mnemonic Function Equation or Operation

Unary Branches

LBRA Long branch always =

LBRN Long branch never =
Simple Branches

LBCC Long branch if carry clear C=0

LBCS Long branch if carry set c=1

LBEQ Long branch if equal zZ=1

LBMI Long branch if minus N=1

LBNE Long branch if not equal Z=0

LBPL Long branch if plus N=0

LBVC Long branch if overflow clear V=0

LBVS Long branch if overflow set V=1

Unsigned Branches

LBHI Long branch if higher C+7Z=0

LBHS Long branch if higher or same c=0

LBLO Long branch if lower zZ=1

LBLS Long branch if lower or same C+z=1
Signed Branches

LBGE Long branch if greater than or equal NOV=0

LBGT Long branch if greater than Z+(NOV)=0

LBLE Long branch if less than or equal Z+(NOV)=1

LBLT Long branch if less than NOV=1

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Set Overview 85

Instruction Set Overview

5.20.3 Bit Condition Branch Instructions

Reference Manual

The bit condition branches are taken when bits in a memory byte are in
a specific state. A mask operand is used to test the location. If all bits in
that location that correspond to ones in the mask are set (BRSET) or

cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127)
from the address of the next memory location after the offset value.
Table 5-19 is a summary of bit condition branches.

Table 5-19. Bit Condition Branch Instructions

Mnemonic Function Equation or Operation
BRCLR Branch if selected bits clear (M) e (mm)=0
BRSET Branch if selected bits set (M) e (mm)=0

CPU12 — Rev. 2.0

86

Instruction Set Overview

MOTOROLA

5.21 Loop Primitive Instructions

Instruction Set Overview
Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The
instructions test a counter value in a register or accumulator (A, B, D, X,
Y, or SP) for zero or non-zero value as a branch condition. There are
predecrement, preincrement, and test-only versions of these
instructions.

The numeric range of 8-bit offset values is $80 (-128) to $7F (127)
from the address of the next memory location after the offset value.
Table 5-20 is a summary of loop primitive branches.

Table 5-20. Loop Primitive Instructions

Mnemonic

Function

Equation or Operation

DBEQ

Decrement counter and branch if =0

(counter= A, B, D, X, Y, or SP)

(counter) — 10 counter
If (counter) = 0, then branch;
else continue to next instruction

DBNE

Decrement counter and branch if # 0

(counter= A, B, D, X, Y, or SP)

(counter) — 100 counter
If (counter) not = 0, then branch;
else continue to next instruction

IBEQ

Increment counter and branch if =0

(counter=A, B, D, X, Y, or SP)

(counter) + 10 counter
If (counter) = 0, then branch;
else continue to next instruction

IBNE

Increment counter and branch if # 0

(counter= A, B, D, X, Y, or SP)

(counter) + 10 counter
If (counter) not = 0, then branch;
else continue to next instruction

TBEQ

Test counter and branch if = 0
(counter = A, B, D, X,Y, or SP)

If (counter) = 0, then branch;
else continue to next instruction

TBNE

Test counter and branch if #0
(counter = A, B, D, X,Y, or SP)

If (counter) not = 0, then branch;
else continue to next instruction

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Set Overview

87

Instruction Set Overview

5.22 Jump and Subroutine Instructions

Jump (JMP) instructions cause immediate changes in sequence. The
JMP instruction loads the PC with an address in the 64-Kbyte memory
map, and program execution continues at that address. The address can
be provided as an absolute 16-bit address or determined by various
forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a
code segment that performs a particular task. A short branch (BSR), a
jump to subroutine (JSR), or an expanded-memory call (CALL) can be
used to initiate subroutines. There is no LBSR instruction, but a
PC-relative JSR performs the same function. A return address is
stacked, then execution begins at the subroutine address. Subroutines
in the normal 64-Kbyte address space are terminated with a
return-from-subroutine (RTS) instruction. RTS unstacks the return
address so that execution resumes with the instruction after BSR or
JSR.

The call subroutine in expanded memory (CALL) instruction is intended
for use with expanded memory. CALL stacks the value in the PPAGE
register and the return address, then writes a new value to PPAGE to
select the memory page where the subroutine resides. The page value
Is an immediate operand in all addressing modes except indexed
indirect modes; in these modes, an operand points to locations in
memory where the new page value and subroutine address are stored.
The return from call (RTC) instruction is used to terminate subroutines in
expanded memory. RTC unstacks the PPAGE value and the return
address so that execution resumes with the next instruction after CALL.
For software compatibility, CALL and RTC execute correctly on devices
that do not have expanded addressing capability. Table 5-21
summarizes the jump and subroutine instructions.

Reference Manual CPU12 — Rev. 2.0

88 Instruction Set Overview MOTOROLA

Instruction Set Overview
Interrupt Instructions

Table 5-21. Jump and Subroutine Instructions

Mnemonic Function Operation

SP-20 SP

BSR Branch to subroutine RTNy : RTNL U M(sp): M(sp+1)
Subroutine address 0 PC

SP-20 SP
RTNH:RTNLD M(SP) . M(SP+1)

CALL Call subroutine SP-10 SP

in expanded memory (PPAGE) U M(gp)

Page 0 PPAGE
Subroutine address 0 PC

JMP Jump Address 0 PC
SP-20 SP
JSR Jump to subroutine RTNy : RTNLO M(sp): M(sp+)

Subroutine address 0 PC

M(spy O PPAGE

SP+10 SP
RTC Return from call
M(SP): M(SP+1) O PCH: PCL
SP+20 SP
M M O PCy: PC
RTS Ret fi brouti (sP) - M(sp+1) H L
eturn from subroutine SP+20 SP

5.23 Interrupt Instructions

CPU12 — Rev. 2.0

Interrupt instructions handle transfer of control to a routine that performs
a critical task. Software interrupts are a type of exception. Section 7.
Exception Processing covers interrupt exception processing in detail.

The software interrupt (SWI) instruction initiates synchronous exception
processing. First, the return PC value is stacked. After CPU context is
stacked, execution continues at the address pointed to by the SWI
vector.

Execution of the SWI instruction causes an interrupt without an interrupt
service request. SWI is not inhibited by global mask bits | and X in the
CCR, and execution of SWI sets the | mask bit. Once an SWI interrupt
begins, maskable interrupts are inhibited until the | bit in the CCR is
cleared. This typically occurs when a return from interrupt (RTI)
instruction at the end of the SWI service routine restores context.

Reference Manual

MOTOROLA

Instruction Set Overview 89

Instruction Set Overview

The CPU12 uses the software interrupt for unimplemented opcode
trapping. There are opcodes in all 256 positions in the page 1 opcode
map, but only 54 of the 256 positions on page 2 of the opcode map are
used. If the CPU attempts to execute one of the unimplemented opcodes
on page 2, an opcode trap interrupt occurs. Traps are essentially
interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including
interrupt service routines. RTI first restores the CCR, B:A, X, Y, and the
return address from the stack. If no other interrupt is pending, normal
execution resumes with the instruction following the last instruction that
executed prior to interrupt.

Table 5-22 is a summary of interrupt instructions.

Table 5-22. Interrupt Instructions

Mnemonic Function Operation

(Mspy) O CCR; (SP) +$0001 I SP
(M(sp): M(sp+1)) O B 1 A; (SP) +$0002 O SP

RTI frorsfrftjer:‘mpt (Mcspy: Msps1y) 0 Xy © X_; (SP) +$0004 0 SP
(M(SP) : M(SP+1)) 0 PCH : PCL; (SP) +$0002 O SP

(Mspy: M(sps1) O Yy YL; (SP) +$0004 0 SP

SP-20 SP; RTNy: RTN_ O Msp): M(sps1)
SP-20 SP; Yyy: YL O Mgpy: Mispaa)
Swi Software interrupt SP—210 SP; Xy : XL O M(spy: M(sp4y)
SP-20 SP;B:A0O M(SP) : M(SP+1)
SP-10 SP;CCR O Mgp)

SP-20 SP; RTNy: RTN_ O Msp): M(sps1)
SP-20 SP; YH : Y|_ O M(SP): M(SP+1)
SP—-20 SP; Xy : X, O Mspy: M(spaa)

SP-20 SP;B:A0O M(SP) : M(SP+1)
SP-10 SP; CCR O Mp

Unimplemented

TRAP opcode interrupt

Reference Manual CPU12 — Rev. 2.0

90 Instruction Set Overview MOTOROLA

Instruction Set Overview
Index Manipulation Instructions

5.24 Index Manipulation Instructions

The index manipulation instructions perform 8- and 16-bit operations on
the three index registers and accumulators, other registers, or memory,
as shown in Table 5-23.

Table 5-23. Index Manipulation Instructions

Mnemonic Function Operation

Addition Instructions

ABX Add B to X B)+(X)O X
ABY AddBtoY B)+(Y)O v
Compare Instructions
CPS Compare SP to memory (SP)—-(M:M+1)
CPX Compare X to memory X)-(M:M+1)
CcpPY Compare Y to memory Y)-(M:M+1)
Load Instructions
LDS Load SP from memory M:M+10O SP
LDX Load X from memory M:M+1)0O X
LDY Load Y from memory M:M+1)DO Y
LEAS Load effective address into SP Effective address [0 SP
LEAX Load effective address into X Effective address 0 X
LEAY Load effective address into Y Effective address 0 Y
Store Instructions
STS Store SP in memory (SP) 0 M:M+1
STX Store X in memory XOM:M+1
STY Store Y in memory MOM:M+1

Transfer Instructions

(A, B, CCR, D, X, Y, or SP)

TFR Transfer register to register 0 A B,CCR,D. X, Y, or SP
TSX Transfer SP to X (sP)O X
TSY Transfer SPto Y (shoyvy
TXS transfer X to SP (X)O sP
TYS transfer Y to SP (Y)Q spP

Exchange Instructions
(A,B,CCR, D, X, Y, or SP)

EXG Exchange register to register ~ (A, B, CCR, D, X, Y, or SP)
XGDX EXchange D with X (D) = (X)
XGDY EXchange D with Y (D) = (Y)
CPU12 — Rev. 2.0 Reference Manual
MOTOROLA Instruction Set Overview 91

Instruction Set Overview

5.25 Stacking Instructions

Reference Manual

The two types of stacking instructions, are shown in Table 5-24. Stack
pointer instructions use specialized forms of mathematical and data
transfer instructions to perform stack pointer manipulation. Stack
operation instructions save information on and retrieve information from
the system stack.

Table 5-24. Stacking Instructions

Mnemonic Function Operation
Stack Pointer Instructions
CPS Compare SP to memory (SP)—-(M:M +1)
DES Decrement SP (sP)-10 SP
INS Increment SP (sP)+10 sP
LDS Load SP M:M+1)0 SP
LEAS Load eﬁective address Effective address O SP
into SP
STS Store SP (SPh O M:M+1
TSX Transfer SP to X (sP)O X
TSY Transfer SP to Y sPhoy
TXS Transfer X to SP X)O sk
TYS Transfer Y to SP (Y)Oo spP
Stack Operation Instructions

PSHA Push A (SP)-10 SP; (A) O M(sp)
PSHB Push B (SP)-10 SP; (B) U M(sp)
PSHC Push CCR (SP)-10 SP;(A) O Mgp
PSHD Push D (SP)—-20 SP; (A:B) O M(sp): M(sp+1)
PSHX Push X (SP)—21 SP; (X) U M(sp): M(spsy)
PSHY Push Y (SP)—20 SP; (Y) O M(sp) : M(spsy)
PULA Pull A (Mspy) O A; (SP)+10 SP
PULB Pull B (Mspy) O B; (SP) +10 SP
PULC Pull CCR (Mspy)) 0 CCR; (SP)+10 SP
PULD Pull D (M(spy: M(sp+1)) 0 A:B;(SP)+20 SP
PULX Pull X (M(sp): Msp+1y)) O X; (SP) +2 0 SP
PULY Pull Y (Msp): M(sp+1)) O Y; (SP)+2 0 SP

CPU12 — Rev. 2.0

92

Instruction Set Overview

MOTOROLA

Instruction Set Overview
Pointer and Index Calculation Instructions

5.26 Pointer and Index Calculation Instructions

The load effective address instructions allow 5-, 8-, or 16-bit constants
or the contents of 8-bit accumulators A and B or 16-bit accumulator D to
be added to the contents of the X and Y index registers, the SP, or the
PC. Table 5-25 is a summary of pointer and index instructions.

Table 5-25. Pointer and Index Calculation Instructions

Mnemonic Function Operation
Load result of indexed addressing mode r + constant 0 SP or
LEAS effective address calculation (r) + (accumulator) 0 SP
into stack pointer r=X,Y, SP, or PC
Load result of indexed addressing mode r + constant [0 X or
LEAX effective address calculation (r) + (accumulator) 00 X
into x index register r=X,Y, SP, or PC
Load result of indexed addressing mode r+ constant 'Y or
LEAY effective address calculation (r) + (accumulator) O Y
into y index register r=X,Y, SP, or PC
CPU12 — Rev. 2.0 Reference Manual

MOTOROLA

Instruction Set Overview 93

Instruction Set Overview

5.27 Condition Code Instructions

Condition code instructions are special forms of mathematical and data
transfer instructions that can be used to change the condition code
register. Table 5-26 shows instructions that can be used to manipulate

the CCR.
Table 5-26. Condition Code Instructions
Mnemonic Function Operation
ANDCC Logical AND CCR with memory (CCR)+ (M)O CCR
CLC Clear C bit o0 C
CLI Clear | bit od |
CLvVv Clear V bit od Vv
ORCC Logical OR CCR with memory (CCR)+(M) O CCR
PSHC Push CCR onto stack (SP)-10 SP; (CCR) O M(gp
PULC Pull CCR from stack (Mpy) 0 CCR; (SP)+10 SP
SEC Set C bit 10cC
SEI Set | bit 101
SEV Set V bit 10V
TAP Transfer A to CCR (A) O CCR
TPA Transfer CCR to A (CCR)O A

Reference Manual CPU12 — Rev. 2.0

94 Instruction Set Overview MOTOROLA

Instruction Set Overview
Stop and Wait Instructions

5.28 Stop and Wait Instructions

CPU12 — Rev. 2.0

As shown in Table 5-27, two instructions put the CPU12 in an inactive
state that reduces power consumption.

The stop instruction (STOP) stacks a return address and the contents of
CPU registers and accumulators, then halts all system clocks.

The wait instruction (WAI) stacks a return address and the contents of
CPU registers and accumulators, then waits for an interrupt service
request; however, system clock signals continue to run.

Both STOP and WAI require that either an interrupt or a reset exception
occur before normal execution of instructions resumes. Although both
instructions require the same number of clock cycles to resume normal
program execution after an interrupt service request is made, restarting
after a STOP requires extra time for the oscillator to reach operating
speed.

Table 5-27. Stop and Wait Instructions

Mnemonic Function Operation

SP-20 SP;RTNy: RTNL O Msp): M(sps1)
SP-20 SP; Yy : Y. O Mgp): Msp)
SP-20 SP; XH : XL O M(SP) : M(SP+1)

SP-20 SP;B: A M(SP) : M(SP+1)
SP-10 SP; CCR O Mgp)
Stop CPU clocks

STOP Stop

SP—20 SP; RTNy: RTN. O Msp): Mspa1)
SP-20 SP; YH : Y|_ O M(SP) : M(SP+1)
WAI Wait for interrupt SP —20 SP; Xy : XL O M(spy i M(sp+1)
SP-20 SP;B:A0 M(SP) : M(SP+1)
SP-10 SP; CCR U Msp)

Reference Manual

MOTOROLA

Instruction Set Overview 95

Instruction Set Overview

5.29 Background Mode and Null Operations

Reference Manual

Background debug mode (BDM) is a special CPU12 operating mode
that is used for system development and debugging. Executing enter
background debug mode (BGND) when BDM is enabled puts the
CPU12 in this mode. For complete information, refer to Section 8.
Development and Debug Support.

Null operations are often used to replace other instructions during
software debugging. Replacing conditional branch instructions with
branch never (BRN), for instance, permits testing a decision-making
routine without actually taking the branches.

Table 5-28 shows the BGND and null operation (NOP) instructions.

Table 5-28. Background Mode and Null Operation Instructions

Mnemonic Function Operation
BGND Enter background debug mode eIl;teBr[zzzﬂufnnsgfr%eellnrgfcrjfezg/il;g
BRN Branch never Does not branch
LBRN Long branch never Does not branch
NOP Null operation —

CPU12 — Rev. 2.0

96

Instruction Set Overview

MOTOROLA

Reference Manual — CPU12

6.1 Contents

6.2 Introduction

CPU12 — Rev. 2.0

6.2
6.3
6.4
6.5
6.6
6.7
6.8

Section 6. Instruction Glossary

Introduction. 97
Glossary Information. 98
ConditionCode Changes, 99
ObjectCode Notation., 100
Source FOMMS. 101
Cycle-by-Cycle Execution. 104
Glossary 109

This section is a comprehensive reference to the CPU12 instruction set.

Reference Manual

MOTOROLA

Instruction Glossary 97

Instruction Glossary

6.3 Glossary Information

The glossary contains an entry for each assembler mnemonic, in
alphabetic order. Figure 6-1 is a representation of a glossary page.

| 5 LDX Load Inde

Operation: M:M+1)? X

MNEMONIC — |

SYMBOLIC DESCRIPTION _—

OF OPERATION Description: Loads the most significa

/ memory at the addres

DETAILED DESCRIPTION _——T_ Condition Codes and Boolean Form
OF OPERATION

N: Set if MSB of resu

/ Z: Setff resultis $00
EFFECT ON V: 0; Cleared.
/

CONDITION CODE REGISTER

STATUS BITS
Addressing Modes, Machine Code, an
Source Form Address Mode | Obje
LDX #oprl6i IMM CE jj
LDX opr8a DIR DE d
LDX oprl6a EXT FE h
L | LDX oprx0_xysp IDX EE
DETAILED SYNTAX / LDX oprx9,xysp IDX1
AND CYCLE-BY-CYCLE LDX oprx16,xysp IDX2
OPERATION LDX [D,xysp] [D,IDX]
LDX [oprx16 xysp] [IDX2]

Figure 6-1. Example Glossary Page

Each entry contains symbolic and textual descriptions of operation,
information concerning the effect of operation on status bits in the
condition code register, and a table that describes assembler syntax,
cycle count, and cycle-by-cycle execution of the instruction.

Reference Manual CPU12 — Rev. 2.0

98 Instruction Glossary MOTOROLA

Instruction Glossary
Condition Code Changes

6.4 Condition Code Changes

CPU12 — Rev. 2.0

The following special characters are used to describe the effects of
instruction execution on the status bits in the condition code register.

O b+ o
|

Status bit not affected by operation
Status bit cleared by operation
Status bit set by operation

Status bit affected by operation

Status bit may be cleared or remain set, but is not set
by operation.

Status bit may be set or remain cleared, but is not
cleared by operation.

Status bit may be changed by operation, but the final
state is not defined.

Status bit used for a special purpose

Reference Manual

MOTOROLA

Instruction Glossary 99

Instruction Glossary

6.5 Object Code Notation

The digits 0 to 9 and the uppercase letters A to F are used to express
hexadecimal values. Pairs of lowercase letters represent the 8-bit values
as described here.

dd — 8-bit direct address $0000 to $00FF; high byte
assumed to be $00

ee — High-order byte of a 16-bit constant offset for indexed
addressing

eb — Exchange/transfer post-byte

ff — Low-order eight bits of a 9-bit signed constant offset
for indexed addressing, or low-order byte of a 16-bit
constant offset for indexed addressing

hh — High-order byte of a 16-bit extended address

il — 8-bit immediate data value

jl — High-order byte of a 16-bit immediate data value
kk — Low-order byte of a 16-bit immediate data value
Ib — Loop primitive (DBNE) post-byte

Il — Low-order byte of a 16-bit extended address

mm — 8-bit immediate mask value for bit manipulation
instructions; set bits indicate bits to be affected

pg — Program overlay page (bank) number used in CALL
instruction

qq — High-order byte of a 16-bit relative offset for long
branches

tn — Trap number $30-$39 or $40-$FF

rr — Signed relative offset $80 (—128) to $7F (+127)
offset relative to the byte following the relative offset
byte, or low-order byte of a 16-bit relative offset for
long branches

xb — Indexed addressing post-byte

Reference Manual CPU12 — Rev. 2.0

100 Instruction Glossary MOTOROLA

6.6 Source Forms

CPU12 — Rev. 2.0

Instruction Glossary
Source Forms

The glossary pages provide only essential information about assembler
source forms. Assemblers generally support a number of assembler
directives, allow definition of program labels, and have special
conventions for comments. For complete information about writing
source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Assemblers are typically flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
Is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, square
brackets ([or]), plus signs (+), minus signs (-), and the register
designation D (as in [D,...), are literal characters.

Groups of italic characters in the columns represent variable information
to be supplied by the programmer. These groups can include any
alphanumeric character or the underscore character, but cannot include
a space or comma. For example, the groups xysp and oprx0_xysp are
both valid, but the two groups oprx0 xysp are not valid because there is
a space between them. Permitted syntax is described here.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.
Recommended register designators are a, A, b, B, ccr, CCR, d, D, x, X,
Y, Y, sp, SP, pc, and PC.

abc — Any one legal register designator for accumulators A or
B or the CCR

abcdxys — Any one legal register designator for accumulators A or
B, the CCR, the double accumulator D, index registers X
orY, or the SP. Some assemblers may accept t2, T2, t3,
or T3 codes in certain cases of transfer and exchange

Reference Manual

MOTOROLA

Instruction Glossary 101

Instruction Glossary

abd —

abdxys —

dxys —
msk8 —
opr8i —
oprlei —

opr8a —

oprléa —

oprx0_xysp —

Reference Manual

instructions, but these forms are intended for Motorola
use only.

Any one legal register designator for accumulators A or
B or the double accumulator D

Any one legal register designator for accumulators A or
B, the double accumulator D, index register X or Y, or the
SP

Any one legal register designation for the double
accumulator D, index registers X or Y, or the SP

Any label or expression that evaluates to an 8-bit value.
Some assemblers require a # symbol before this value.

Any label or expression that evaluates to an 8-bit
immediate value

Any label or expression that evaluates to a 16-bit
immediate value

Any label or expression that evaluates to an 8-bit value.
The instruction treats this 8-bit value as the low-order 8
bits of an address in the direct page of the 64-Kbyte
address space ($00xx).

Any label or expression that evaluates to a 16-bit value.
The instruction treats this value as an address in the
64-Kbyte address space.

This word breaks down into one of the following
alternative forms that assemble to an 8-bit indexed
addressing postbyte code. These forms generate the
same object code except for the value of the postbyte
code, which is designated as xb in the object code
columns of the glossary pages. As with the source forms,
treat all commas, plus signs, and minus signs as literal
syntax elements. The italicized words used in these
forms are included in this key.

oprx5,xysp

oprx3,—Xxys

oprx3,+xys

oprx3,xys—

oprx3,xys+

abd,xysp

CPU12 — Rev. 2.0

102 Instruction Glossary MOTOROLA

Instruction Glossary
Source Forms

oprx3 — Any label or expression that evaluates to a value in the
range +1 to +8

oprx5 — Any label or expression that evaluates to a 5-bit value in
the range —16 to +15

oprx9 — Any label or expression that evaluates to a 9-bit value in
the range —256 to +255

oprx16 — Any label or expression that evaluates to a 16-bit value.
Since the CPU12 has a 16-bit address bus, this can be
either a signed or an unsigned value.

page — Any label or expression that evaluates to an 8-bit value.
The CPU12 recognizes up to an 8-bit page value for
memory expansion but not all MCUs that include the
CPU12 implement all of these bits. It is the programmer’s
responsibility to limit the page value to legal values for
the intended MCU system. Some assemblers require a #
symbol before this value.

rel8 — Any label or expression that refers to an address that is
within —256 to +255 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 8-bit signed offset and
include it in the object code for this instruction.

rel9 — Any label or expression that refers to an address that is
within =512 to +511 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 9-bit signed offset and
include it in the object code for this instruction. The sign
bit for this 9-bit value is encoded by the assembler as a
bit in the looping postbyte (Ib) of one of the loop control
instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.
The remaining eight bits of the offset are included as an
extra byte of object code.

rell6 — Any label or expression that refers to an address
anywhere in the 64-Kbyte address space. The assembler
will calculate the 16-bit signed offset between this
address and the next address after the last byte of object
code for this instruction and include it in the object code
for this instruction.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Instruction Glossary 103

Instruction Glossary

trapnum — Any label or expression that evaluates to an 8-bit number
in the range $30-$39 or $40-$FF. Used for TRAP
instruction.

Xys — Any one legal register designation for index registers X or
Y or the SP

Xysp — Any one legal register designation for index registers X or
Y, the SP, or the PC. The reference point for PC-relative
instructions is the next address after the last byte of
object code for the current instruction.

6.7 Cycle-by-Cycle Execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the type and speed of
memory in the system, a user can determine the execution time for any
instruction in any system.

A single letter code in the column represents a single CPU cycle.
Uppercase letters indicate 16-bit access cycles. There are cycle codes
for each addressing mode variation of each instruction. Simply count
code letters to determine the execution time of an instruction in a
best-case system. An example of a best-case system is a single-chip
16-bit system with no 16-bit off-boundary data accesses to any locations
other than on-chip RAM.

Many conditions can cause one or more instruction cycles to be
stretched, but the CPU is not aware of the stretch delays because the
clock to the CPU is temporarily stopped during these delays.

The following paragraphs explain the cycle code letters used and note
conditions that can cause each type of cycle to be stretched.

f — Free cycle. This indicates a cycle where the CPU
does not require use of the system buses. An f cycle
Is always one cycle of the system bus clock. These
cycles can be used by a queue controller or the
background debug system to perform single cycle
accesses without disturbing the CPU.

Reference Manual CPU12 — Rev. 2.0

104 Instruction Glossary MOTOROLA

Instruction Glossary
Cycle-by-Cycle Execution

g — Read 8-bit PPAGE register. These cycles are used
only with the CALL instruction to read the current
value of the PPAGE register and are not visible on the
external bus. Since the PPAGE register is an internal
8-bit register, these cycles are never stretched.

| — Read indirect pointer. Indexed indirect instructions
use this 16-bit pointer from memory to address the
operand for the instruction. These are always 16-bit
reads but they can be either aligned or misaligned.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the corresponding data is stored in external memory.
There can be additional stretching when the address
space is assigned to a chip-select circuit programmed
for slow memory. These cycles are also stretched if
they correspond to misaligned access to a memory
that is not designed for single-cycle misaligned
access.

I — Read indirect PPAGE value. These cycles are only
used with indexed indirect versions of the CALL
instruction, where the 8-bit value for the memory
expansion page register of the CALL destination is
fetched from an indirect memory location. These
cycles are stretched only when controlled by a
chip-select circuit that is programmed for slow
memory.

n — Write 8-bit PPAGE register. These cycles are used
only with the CALL and RTC instructions to write the
destination value of the PPAGE register and are not
visible on the external bus. Since the PPAGE register
Is an internal 8-bit register, these cycles are never
stretched.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Instruction Glossary 105

Instruction Glossary

Reference Manual

O — Optional cycle. Program information is always fetched

as aligned 16-bit words. When an instruction consists
of an odd number of bytes, and the first byte is
misaligned, an O cycle is used to make an additional
program word access (P) cycle that maintains queue
order. In all other cases, the O cycle appears as a free
(f) cycle. The $18 prebyte for page two opcodes is
treated as a special 1-byte instruction. If the prebyte is
misaligned, the O cycle is used as a program word
access for the prebyte; if the prebyte is aligned, the O
cycle appears as a free cycle. If the remainder of the
instruction consists of an odd number of bytes,
another O cycle is required some time before the
instruction is completed. If the O cycle for the prebyte
Is treated as a P cycle, any subsequent O cycle in the
same instruction is treated as an f cycle; if the O cycle
for the prebyte is treated as an f cycle, any
subsequent O cycle in the same instruction is treated
as a P cycle. Optional cycles used for program word
accesses can be extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. Optional cycles used as free cycles are
never stretched.

Program word access. Program information is fetched
as aligned 16-bit words. These cycles are extended to
two bus cycles if the MCU is operating with an 8-bit
external data bus and the program is stored
externally. There can be additional stretching when
the address space is assigned to a chip-select circuit
programmed for slow memory.

8-bit data read. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.

CPU12 — Rev. 2.0

106

Instruction Glossary MOTOROLA

CPU12 — Rev. 2.0

R —

u —

Instruction Glossary
Cycle-by-Cycle Execution

16-bit data read. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned accesses to memory that is not designed
for single-cycle misaligned access.

Stack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.

Stack 16-bit data. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching if the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single cycle
misaligned access. The internal RAM is designed to
allow single cycle misaligned word access.

8-bit data write. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.

16-bit data write. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned access to a memory that is not designed
for single-cycle misaligned access.

Unstack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.

Reference Manual

MOTOROLA

Instruction Glossary 107

Instruction Glossary

U —

Reference Manual

Unstack 16-bit data. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching when the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to
allow single-cycle misaligned word access.

Vector fetch. Vectors are always aligned 16-bit words.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory.

8-bit conditional read. These cycles are either data
read cycles or unused cycles, depending on the data
and flow of the REVW instruction. These cycles are
stretched only when controlled by a chip-select circuit
programmed for slow memory.

16-bit conditional read. These cycles are either data
read cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are extended to two bus cycles if the MCU is operating
with an 8-bit external data bus and the corresponding
data is stored in external memory. There can be
additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. These cycles are also stretched if they
correspond to misaligned accesses to a memory that
Is not designed for single-cycle misaligned access.

8-bit conditional write. These cycles are either data
write cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are only stretched when controlled by a chip-select
circuit programmed for slow memory.

CPU12 — Rev. 2.0

108 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary

Special Notation for Branch Taken/Not Taken Cases

PPP/P — Short branches require three cycles if taken, one cycle
if not taken. Since the instruction consists of a single
word containing both an opcode and an 8-bit offset,
the not-taken case is simple — the queue advances,
another program word fetch is made, and execution
continues with the next instruction. The taken case
requires that the queue be refilled so that execution
can continue at a new address. First, the effective
address of the destination is determined, then the
CPU performs three program word fetches from that
address.

OPPP/OPO — Long branches require four cycles if taken, three
cycles if not taken. Optional cycles are required
because all long branches are page two opcodes, and
thus include the $18 prebyte. The CPU12 treats the
prebyte as a special 1-byte instruction. If the prebyte
Is misaligned, the optional cycle is used to perform a
program word access; if the prebyte is aligned, the
optional cycle is used to perform a free cycle. As a
result, both the taken and not-taken cases use one
optional cycle for the prebyte. In the not-taken case,
the queue must advance so that execution can
continue with the next instruction, and another
optional cycle is required to maintain the queue. The
taken case requires that the queue be refilled so that
execution can continue at a new address. First, the
effective address of the destination is determined,
then the CPU performs three program word fetches
from that address.

6.8 Glossary

This subsection contains an entry for each assembler mnemonic, in
alphabetic order.

CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Instruction Glossary 109

Instruction Glossary
A B A Add Accumulator B to Accumulator A A B A

Operation: (A)+B)O A

Description: Adds the content of accumulator B to the content of accumulator A and
places the result in A. The content of B is not changed. This instruction
affects the H status bit so it is suitable for use in BCD arithmetic
operations. See DAA instruction for additional information.

Condition Codes
and Boolean S X H I N Z V C
Formulas: A

- | A A

H: A3+ B3+B3+R3+R3+ A3
Set if there was a carry from bit 3; cleared otherwise
N: Setif MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V: A7+ B7+R7+A7+B7+R7
Set if a two’s complement overflow resulted from the
operation; cleared otherwise
C: A7+ B7+B7+R7+R7+ A7
Set if there was a carry from the MSB of the result;
cleared otherwise

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: ABA INH 18 06 2 00
Reference Manual CPU12 — Rev. 2.0

110 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary

A B X Add Accumulator B to Index Register X A B X

Operation: (B)+(X) O X

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register X considering the possible carry out of the low-order byte of X;
places the result in X. The content of B is not changed.

This mnemonic is implemented by the LEAX B, X instruction. The LEAX
instruction allows A, B, D, or a constant to be added to X. For
compatibility with the M68HC11, the mnemonic ABX is translated into
the LEAX B,X instruction by the assembler.

Condition Codes
and Boolean S X H I N zZ V C
Formulas:

None affected

Addressing
Modes, Machine Address : Access
Code, and Source Form Mode Object Code Cycles Detail
Execution Times: ABX translates to
(1)
LEAX B.X IDX 1A E5 2 PP
1. Due to internal CPU requirements, the program word fetch is performed twice to the same
address during this instruction.
CPU12 — Rev. 2.0 Reference Manual

MOTOROLA Instruction Glossary 111

Instruction Glossary

ABY

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Reference Manual

Add Accumulator B to Index Register Y A B Y

B)+(Y)O Y

Adds the 8-bit unsigned content of accumulator B to the content of index
register Y considering the possible carry out of the low-order byte of Y;
places the result in Y. The content of B is not changed.

This mnemonic is implemented by the LEAY B,Y instruction. The LEAY
instruction allows A, B, D, or a constant to be added to Y. For
compatibility with the M68HC11, the mnemonic ABY is translated into
the LEAY B,Y instruction by the assembler.

S X H I N Z V C

None affected

Address . Access
Source Form Mode Object Code Cycles Detail
ABY translates to... (1)
LEAY B.Y IDX 19 ED 2 PP

1. Due to internal CPU requirements, the program word fetch is performed twice to the same
address during this instruction.

CPU12 — Rev. 2.0

112

Instruction Glossary MOTOROLA

ADCA

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Add with Carry to A

A)+M+COA

Instruction Glossary

Glossary

ADCA

Adds the content of accumulator A to the content of memory location M,
then adds the value of the C bit and places the result in A. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

S X H I N

z

v C

N

A

A| A

H: X3¢M3+M3e¢R3+R3+ X3

Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: X7+ M7¢R7+X7+M7e+R7

Set if two’s complement overflow resulted from the

operation; cleared otherwise
C: X7 M7 +M7+ R7+R7 ¢ X7

Set if there was a carry from the MSB of the result;
cleared otherwise

Source Form Aﬁ/l%r;ess Object Code Cycles A[():;:;s”s
ADCA #opr8i IMM 89 ii 1 P
ADCA opr8a DIR 99 dd 3 rfpP
ADCA oprl6a EXT B9 hh Il 3 r OP
ADCA oprx0_xysp IDX A9 xb 3 rfp
ADCA oprx9,xysp IDX1 A9 xb ff 3 r PO
ADCA oprx16,xysp IDX2 A9 xb ee ff 4 frpPP
ADCA [D,xysp] [D,IDX] A9 xb 6 flfrfP
ADCA [oprx16,xysp] [IDX2] A9 xb ee ff 6 flPrfP

Reference Manual

MOTOROLA

Instruction Glossary

113

Instruction Glossary
ADCB ADCB

Operation: (B)+(M)+C0O B

Description: Adds the content of accumulator B to the content of memory location M,
then adds the value of the C bit and places the result in B. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

Condition Codes
and Boolean S X H I N Z V C
Formulas: A

- | A A

H: X3+ M3+M3+R3+R3+ X3
Set if there was a carry from bit 3; cleared otherwise
N: Setif MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V: X7 M7 R7+X7¢M7+R7
Set if two’s complement overflow resulted from the
operation; cleared otherwise
C: X7+ M7 +M7¢R7+R7+ X7
Set if there was a carry from the MSB of the result;
cleared otherwise

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: ADCB #opr8i IMM Co i 1 P
ADCB opr8a DIR D9 dd 3 rfpP
ADCB oprl6a EXT F9 hh Il 3 r OP
ADCB oprx0_xysp IDX E9 xb 3 rfp
ADCB oprx9,xysp IDX1 E9 xb ff 3 r PO
ADCB oprx16,xysp IDX2 E9 xb ee ff 4 frpPP
ADCB [D,xysp] [D,IDX] E9 xb 6 flfrfP
ADCB [oprx16,xysp] [IDX2] E9 xb ee ff 6 flPrfP
Reference Manual CPU12 — Rev. 2.0

114 Instruction Glossary MOTOROLA

ADDA

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Add without Carry to A

(A) + (M) O A

Instruction Glossary

Glossary

ADDA

Adds the content of memory location M to accumulator A and places the
resultin A. This instruction affects the H status bit, so itis suitable for use
in BCD arithmetic operations. See DAA instruction for additional

information.
S X H I N Z V C
- =1 A|l=1]A]A

H: X3¢M3+M3e+R3+R3¢ X3

Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: X7 ¢ M7 R7+X79+ M7+ R7

Set if two’s complement overflow resulted from the

operation; cleared otherwise
C: X7+ M7 +M7 ¢ R7 +R7 * X7

Set if there was a carry from the MSB of the result;
cleared otherwise

Source Form Aﬁ/l%r;ess Object Code Cycles A[():e(::tzsils
ADDA #opr8i IMM 8B ii 1 P
ADDA opr8a DIR 9B dd 3 rfp
ADDA oprl6a EXT BB hh I 3 r OP
ADDA oprx0_xysp IDX AB xb 3 rfp
ADDA oprx9,xysp IDX1 AB xb ff 3 r PO
ADDA oprx16,xysp IDX2 AB xb ee ff 4 frpPP
ADDA [D,xysp] [D,IDX] AB xb 6 flfrfP
ADDA [oprx16,xysp] [IDX2] AB xb ee ff 6 flPrfP

Reference Manual

MOTOROLA

Instruction Glossary

115

Instruction Glossary
A D D B Add without Carry to B A D D B

Operation: (B)+(M)O B

Description: Adds the content of memory location M to accumulator B and places the
resultin B. This instruction affects the H status bit, so itis suitable for use
in BCD arithmetic operations. See DAA instruction for additional

information.
Condition Codes
and Boolean S X H I N Z V C
Formulas: _l-Tal-Tlala

H: X3+M3+M3+R3+R3* X3
Set if there was a carry from bit 3; cleared otherwise
N: Setif MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V: X7 M7 R7+X7¢M7+R7
Set if two’s complement overflow resulted from the
operation; cleared otherwise
C: X7+ M7+M7¢R7+R7+ X7
Set if there was a carry from the MSB of the result;
cleared otherwise

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: ADDB #opr8i IMM CB ii 1 P
ADDB opr8a DIR DB dd 3 rfpP
ADDB oprl6a EXT FB hh Il 3 r OP
ADDB oprx0_xysp IDX EB xb 3 rfp
ADDB oprx9,xysp IDX1 EB xb ff 3 r PO
ADDB oprx16,xysp IDX2 EB xb ee ff 4 frpPP
ADDB [D,xysp] [D,IDX] EB xb 6 flfrfP
ADDB [oprx16,xysp] [IDX2] EB xb ee ff 6 flPrfP
Reference Manual CPU12 — Rev. 2.0

116 Instruction Glossary MOTOROLA

ADDD

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Add Double Accumulator

A:B)+(M:M+1)O A:B

Instruction Glossary
Glossary

ADDD

Adds the content of memory location M concatenated with the content of
memory location M +1 to the content of double accumulator D and
places the result in D. Accumulator A forms the high-order half of 16-bit
double accumulator D; accumulator B forms the low-order half.

-l -] -]-1]a

A

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $0000; cleared otherwise

V: D15« M15¢ R15+ D15+« M15 ¢ R15

Set if two’s complement overflow resulted from the

operation; cleared otherwise
C: D15+ M15+M15« R15 +R15+ D15

Set if there was a carry from the MSB of the result;
cleared otherwise

Source Form As/lciljrdeess Object Code Cycles A[():e(::tzsils
ADDD #opr16i IMM C3jj kk 2 oP
ADDD opr8a DIR D3 dd 3 Rf P
ADDD opril6a EXT F3 hh Il 3 ROP
ADDD oprx0_xysp IDX E3 xb 3 Rf P
ADDD oprx9,xysp IDX1 E3 xb ff 3 RPO
ADDD oprx16,xysp IDX2 E3 xb ee ff 4 f RPP
ADDD [D,xysp] [D,IDX] E3 xb 6 fIfTRfFP
ADDD [oprx16,xysp] [IDX2] E3 xb ee ff 6 f1PRfP

Reference Manual

MOTOROLA

Instruction Glossary

117

Instruction Glossary

ANDA

Operation: (A)e (M) O A

Description:

Logical AND A

ANDA

Performs logical AND between the content of memory location M and

the content of accumulator A. The result is placed in A. After the
operation is performed, each bit of A is the logical AND of the
corresponding bits of M and of A before the operation began.

Condition Codes
and Boolean S X H | N

Formulas:
-l =] =1=1A

A

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: 0; cleared.

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: ANDA #opr8i IMM 84 ii 1 P
ANDA opr8a DIR 94 dd 3 rfpP
ANDA oprl6a EXT B4 hh I 3 r OP
ANDA oprx0_xysp IDX A4 xb 3 rfp
ANDA oprx9,xysp IDX1 A4 xb ff 3 r PO
ANDA oprx16,xysp IDX2 A4 xb ee ff 4 frpPP
ANDA [D,xysp] [D,IDX] A4 xb 6 flfrfP
ANDA [oprx16,xysp] [IDX2] A4 xb ee ff 6 flPrfP

Reference Manual

CPU12 — Rev. 2.0

118 Instruction Glossary

MOTOROLA

ANDB

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Instruction Glossary
Glossary

Logical AND B A N D B

(B)* (M)0 B

Performs logical AND between the content of memory location M and
the content of accumulator B. The result is placed in B. After the
operation is performed, each bit of B is the logical AND of the
corresponding bits of M and of B before the operation began.

- |=-|=-1-]a]|a|o]|-

N: Set if MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V: 0; cleared

Source Form Aﬁﬂ%rg:s Object Code Cycles A[():;:;s”s
ANDB #opr8i IMM C4ii 1 P
ANDB opr8a DIR D4 dd 3 rfpP
ANDB oprl6a EXT F4 hh Il 3 r OP
ANDB oprx0_xysp IDX E4 xb 3 rfp
ANDB oprx9,xysp IDX1 E4 xb ff 3 r PO
ANDB oprx16,xysp IDX2 E4 xb ee ff 4 frpPP
ANDB [D,xysp] [D,IDX] E4 xb 6 flfrfP
ANDB [oprx16,xysp] [IDX2] E4 xb ee ff 6 flPrfP

Reference Manual

MOTOROLA

Instruction Glossary 119

A N DCC Logical AND CCR with Mask A N DCC

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Reference Manual

(CCR) * (Mask) 0 CCR

Performs bitwise logical AND between the content of a mask operand
and the content of the CCR. The result is placed in the CCR. After the
operation is performed, each bit of the CCR is the result of a logical AND
with the corresponding bits of the mask. To clear CCR bits, clear the
corresponding mask bits. CCR bits that correspond to ones in the mask
are not changed by the ANDCC operation.

If the | mask bit is cleared, there is a 1-cycle delay before the system
allows interrupt requests. This prevents interrupts from occurring
between instructions in the sequences CLI, WAI and CLI, SEI (CLI is
equivalent to ANDCC #$EF).

oo o p g o oo

Condition code bits are cleared if the corresponding bit was 0 before the
operation or if the corresponding bit in the mask is 0.

Address . Access
Source Form Mode Object Code Cycles Detail
ANDCC #opr8i IMM 10 ii 1 P

CPU12 — Rev. 2.0

120

Instruction Glossary MOTOROLA

ASL

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Arithmetic Shift Left Memory
(same as LSL)

C

l————

Instruction Glossary

Glossary

ASL

<—(0)

Shifts all bits of memory location M one bit position to the left. Bit 0 is
loaded with a 0. The C status bit is loaded from the most significant bit

of M.

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise
V: NOC=[NeC]+[Ne C](for N and C after the shift)
Setif (N is setand C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7

Set if the MSB of M was set before the shift; cleared otherwise

Source Form Aﬁﬂ%rg:s Object Code Cycles A[():;:;s”s
ASL oprl6a EXT 78 hh |1 4 r OPw
ASL oprx0_xysp IDX 68 xb 3 r Pw
ASL oprx9,xysp IDX1 68 xb ff 4 r POw
ASL oprx16,xysp IDX2 68 xb ee ff 5 fr PPw
ASL [D,xysp] [D,IDX] 68 xb 6 flfrPw
ASL [oprx16,xysp] [IDX2] 68 xb ee ff 6 f1PrPw

Reference Manual

MOTOROLA

Instruction Glossary

121

ASLA

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Reference Manual

Instruction Glossary

Arithmetic Shift Left A
(same as LSLA)

ASLA

e — 0 <@

Shifts all bits of accumulator A one bit position to the left. Bit O is loaded
with a 0. The C status bit is loaded from the most significant bit of A.

N: Set if MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise

V: NOC=[N+C]+[NeC](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the MSB of A was set before the shift; cleared otherwise

Address , Access
Source Form Mode Object Code Cycles Detail
ASLA INH 48 1 o

CPU12 — Rev. 2.0

122

Instruction Glossary MOTOROLA

ASLB

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Instruction Glossary
Glossary

ASLB

Arithmetic Shift Left B
(same as LSLB)

S e — 0

Shifts all bits of accumulator B one bit position to the left. Bit O is loaded
with a 0. The C status bit is loaded from the most significant bit of B.

N: Set if MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise

V: NOC=[N+C]+[N+ C](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the MSB of B was set before the shift; cleared otherwise

Address , Access
Source Form Mode Object Code Cycles Detail
ASLB INH 58 1 o

Reference Manual

MOTOROLA

Instruction Glossary 123

ASLD

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Reference Manual

Instruction Glossary

Arithmetic Shift Left Double Accumulator
(same as LSLD)

ASLD

C l€«—fb7—————— bO € |b7 ———— —— boi<——(0)

Shifts all bits of double accumulator D one bit position to the left. Bit O is
loaded with a 0. The C status bit is loaded from the most significant bit
of D.

- | -1 - —-1A]A|A]A

N: Set if MSB of result is set; cleared otherwise
Z: Setif result is $0000; cleared otherwise

V: NOC=[N+C]+[NeC](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: D15
Set if the MSB of D was set before the shift; cleared otherwise

Address , Access
Source Form Mode Object Code Cycles Detail
ASLD INH 59 1 o

CPU12 — Rev. 2.0

124

Instruction Glossary MOTOROLA

ASR

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Arithmetic Shift Right Memory

—» C

Instruction Glossary

Glossary

ASR

Shifts all bits of memory location M one place to the right. Bit 7 is held
constant. Bit O is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The

carry bit can be used to round the result.

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: NOC=[N+C]+[NeC](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: MO

Set if the LSB of M was set before the shift; cleared otherwise

Source Form A(lil/l(il)rg:s Object Code Cycles A[():;:;s”s
ASR oprl6a EXT 77 hh |1 4 r OPw
ASR oprx0_xysp IDX 67 xb 3 r Pw
ASR oprx9,xysp IDX1 67 xb ff 4 r POw
ASR oprx16,xysp IDX2 67 xb ee ff 5 fr PPw
ASR [D,xysp] [D,IDX] 67 xb 6 flfrPw
ASR [oprx16,xysp] [IDX2] 67 xb ee ff 6 f1PrPw

Reference Manual

MOTOROLA

Instruction Glossary

125

Instruction Glossary
ASRA Arithmetic Shift Right A ASRA

Operation:

e
b7 —————— bo[—» C

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is held
constant. Bit O is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

Condition Codes
and Boolean S X H I N Z V C
Formulas: Al A

N: Set if MSB of result is set; cleared otherwise

Z. Setif result is $00; cleared otherwise

V: NOC=[N+C]+[Ne C](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C. A0
Set if the LSB of A was set before the shift; cleared otherwise

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: ASRA INH 47 1 0
Reference Manual CPU12 — Rev. 2.0

126 Instruction Glossary MOTOROLA

ASRB

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Arithmetic Shift Right B

I e~
b7 —bO—» C

Instruction Glossary
Glossary

ASRB

Shifts all bits of accumulator B one place to the right. Bit 7 is held

constant. Bit O is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: NOC=[N+C]+[Ne C](for N and C after the shift)
Setif (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: BO

Set if the LSB of B was set before the shift; cleared otherwise

Address , Access
Source Form Mode Object Code Cycles Detail
ASRB INH 57 1 o

Reference Manual

MOTOROLA

Instruction Glossary

127

Instruction Glossary
B ((Branch if Carry Cleared B ((
(Same as BHS)

Operation: If C =0, then (PC) + $0002 + Rel 0 PC
Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.9 Relative Addressing Mode for details of branch execution.

Condition Codes
and Boolean S X H I N zZ V C
Formulas:

None affected

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: BCC rel8 REL 24 rr 3/1 ppp/ (1)
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.
Branch Complementary Branch

Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment

r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed

r=m BGE 2C NOV=0 r<m BLT 2D Signed

r=m BEQ 27 z=1 r£m BNE 26 Signed

r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed

r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned

Carry BCS 25 c=1 No Carry BCC 24 Simple

Negative BMI 2B N=1 Plus BPL 2A Simple

Overflow BVS 29 v=1 No Overflow BVvVC 28 Simple

r=0 BEQ 27 z=1 r£0 BNE 26 Simple

Always BRA 20 — Never BRN 21 Unconditional
Reference Manual CPU12 — Rev. 2.0

128 Instruction Glossary MOTOROLA

BCLR

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

Instruction Glossary
Glossary

Clear Bits in Memory B C L R

(M) e (Mask) 0 M

Clears bits in location M. To clear a bit, set the corresponding bit in the
mask byte. Bits in M that correspond to Os in the mask byte are not
changed. Mask bytes can be located at PC + 2, PC + 3, or PC + 4,
depending on addressing mode used.

N: Set if MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V: 0; cleared

Source Form '?\‘Ad:c;:(sﬁ Object Code Cycles A[():gtzsils
BCLR opr8a, msk8 DIR 4D dd nm 4 r POw
BCLR oprl6a, msk8 EXT 1D hh Il mm 4 r PPw
BCLR oprx0_xysp, msk8 IDX 0D xb mm 4 r POw
BCLR oprx9,xysp, msk8 IDX1 OD xb ff nm 4 r PwP
BCLR oprx16,xysp, msk8 IDX2 OD xb ee ff nm 6 f r PWOP

1. Indirect forms of indexed addressing cannot be used with this instruction.

Reference Manual

MOTOROLA

Instruction Glossary 129

Instruction Glossary

Operation:

Description:

Condition Codes
and Boolean

Formulas:

Addressing
Modes, Machine

Code, and

Execution Times:

Branch if Carry Set

(Same as BLO)

If C =1, then (PC) + $0002 + Rel O PC

Simple branch

Tests the C status bit and branches if C = 1.

BCS

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BCS rel8 REL 25 rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

Reference Manual

CPU12 — Rev. 2.0

130

Instruction Glossary

MOTOROLA

BEQ

Operation:
Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Instruction Glossary
Glossary

Branch if Equal B EQ

If Z=1, then (PC) + $0002 + Rel 0 PC
Simple branch
Tests the Z status bit and branches if Z = 1.

See 3.9 Relative Addressing Mode for details of branch execution.

None affected

Address . Access
Source Form Mode Object Code Cycles Detail
BEQ rel8 REL 27 rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Glossary 131

Instruction Glossary

Operation:

Description:

Condition Codes
and Boolean

Formulas:

Addressing
Modes, Machine

Code, and

Execution Times:

Branch if Greater than or Equal to Zero

If N [V =0, then (PC) + $0002 + Rel O PC

For signed two’s complement values
if (Accumulator) = (Memory), then branch

If BGE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the signed two’s complement number in the accumulator is
greater than or equal to the signed two’s complement number in
memory.

BGE

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BGE rel8 REL 2Crr 31 pPp/ P(D)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

Reference Manual

CPU12 — Rev. 2.0

132

Instruction Glossary

MOTOROLA

BGND

Description:

Condition Codes

and Boolean
Formulas:

Addressing

Modes, Machine

Code, and

Execution Times:

CPU12 — Rev. 2.0

Instruction Glossary
Glossary

BGND

BGND operates like a software interrupt, except that no registers are
stacked. First, the current PC value is stored in internal CPU register
TMP2. Next, the BDM ROM and background register block become
active. The BDM ROM contains a substitute vector, mapped to the
address of the software interrupt vector, which points to routines in the
BDM ROM that control background operation. The substitute vector is
fetched, and execution continues from the address that it points to.
Finally, the CPU checks the location that TMP2 points to. If the value
stored in that location is $00 (the BGND opcode), TMP2 is incremented,
so that the instruction that follows the BGND instruction is the first
instruction executed when normal program execution resumes.

Enter Background Debug Mode

For all other types of BDM entry, the CPU performs the same sequence
of operations as for a BGND instruction, but the value stored in TMP2
already points to the instruction that would have executed next had BDM
not become active. If active BDM is triggered just as a BGND instruction
is about to execute, the BDM firmware does increment TMP2, but the
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received
via a special single-wire serial interface. BDM is terminated by the
execution of specific debugging commands. Upon exit from BDM, the
background/boot ROM and registers are disabled, the instruction queue
is refilled starting with the return address pointed to by TMP2, and
normal processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is
disabled, BGND executes as described, but the firmware causes
execution to return to the user program. Refer to Section 8.
Development and Debug Support for more information concerning
BDM.

S X H I N Z V C

None affected.

Address , Access
Source Form Mode Object Code Cycles Detail
BGND INH 00 5 Vi PPP

Reference Manual

MOTOROLA

Instruction Glossary 133

Instruction Glossary

BGT

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Branch if Greater than Zero B GT

If Z+(N U V) =0, then (PC) + $0002 + Rel 0 PC

For signed two’s complement values
if (Accumulator) > (Memory), then branch

If BGT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the signed two’s complement number in the accumulator is
greater than the signed two’s complement number in memory.

See 3.9 Relative Addressing Mode for details of branch execution.

None affected

Address . Access
Source Form Mode Object Code Cycles Detail
BGT rel8 REL 2E rr 31 pPp/ P(D)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z2=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

Reference Manual

CPU12 — Rev. 2.0

134

Instruction Glossary MOTOROLA

BHI

Operation:

Description:

Condition Codes

and Boolean
Formulas:

Addressing

Modes, Machine

Code, and

Execution Times:

Instruction Glossary
Glossary

BHI

Branch if Higher

If C+Z =0, then (PC) + $0002 + Rel O PC
For unsigned values, if (Accumulator) > (Memory), then branch

If BHI is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. Generally not useful after
INC/DEC, LD/ST, and TST/CLR/COM because these instructions do not
affect the C status bit.

See 3.9 Relative Addressing Mode for details of branch execution.

S X H I N Z V C

None affected

Address . Access
Source Form Mode Object Code Cycles Detail
BHI rel8 REL 22 rr 3/1 PPpP/ PL 1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Glossary 135

Instruction Glossary
B H S Branch if Higher or Same B H S
(Same as BCC)

Operation: If C =0, then (PC) + $0002 + Rel 0 PC

For unsigned values, if (Accumulator) = (Memory), then branch

Description: If BHS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator was greater than
the unsigned binary number in memory. Generally not useful after
INC/DEC, LD/ST, and TST/CLR/COM because these instructions do not
affect the C status bit.

See 3.9 Relative Addressing Mode for details of branch execution.

Condition Codes
and Boolean S X H I N Z V C
Formulas:

None affected

Addressing
Modes, Machine Source Form Aﬁﬂ%rgess Object Code Cycles A[():;:;s”s
Code, and
, : . BHS rel8 REL 24 rr 3/1 PPP/ PUL)
Execution Times:

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 rz0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual CPU12 —Rev. 2.0

136 Instruction Glossary MOTOROLA

BITA

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

CPU12 — Rev. 2.0

(A) e (M)

Bit Test A

Instruction Glossary

Glossary

BITA

Performs bitwise logical AND on the content of accumulator A and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: 0; cleared

Source Form A(lil/l(il)rg:s Object Code Cycles A[():;:;s”s
BITA #opr8i IMM 85 ii 1 P
BITA opr8a DIR 95 dd 3 rfp
BITA oprl6a EXT B5 hh Il 3 r OP
BITA oprx0_xysp IDX A5 xb 3 rfpP
BITA oprx9,xysp IDX1 A5 xb ff 3 r PO
BITA oprx16,xysp IDX2 A5 xb ee ff 4 frpPP
BITA [D,xysp] [D,IDX] A5 xb 6 flfrfP
BITA [oprx16,xysp] [IDX2] A5 xb ee ff 6 flPrfP

Reference Manual

MOTOROLA

Instruction Glossary

137

Instruction Glossary

BITB

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Reference Manual

(B)* (M)

Bit Test B

BITB

Performs bitwise logical AND on the content of accumulator B and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

N: Set if MSB of result is set; cleared otherwise

Z: Setif result is $00; cleared otherwise

V: 0; cleared

Source Form Aﬁﬂ%rgss Object Code Cycles A[():;:;s”s
BITB #opr8i IMM C5 i 1 P
BITB opr8a DIR D5 dd 3 rfp
BITB oprl6a EXT F5 hh Il 3 r OP
BITB oprx0_xysp IDX E5 xb 3 rfpP
BITB oprx9,xysp IDX1 E5 xb ff 3 r PO
BITB oprx16,xysp IDX2 E5 xb ee ff 4 frpPP
BITB [D,xysp] [D,IDX] E5 xb 6 flfrfP
BITB [oprx16,xysp] [IDX2] E5 xb ee ff 6 flPrfP

CPU12 — Rev. 2.0

138

Instruction Glossary

MOTOROLA

BLE

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and

Execution Times:

Branch if Less Than or Equal to Zero

IfZ+ (N U V) =1, then (PC) + $0002 + Rel O PC

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Instruction Glossary

Glossary

BLE

If BLE is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator was less than
or equal to the two’s complement number in memory.

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BLE rel8 REL 2F rr 31 pPp/ P(D)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the

branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z2=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Glossary

139

Instruction Glossary

Operation:

Description:

Condition Codes
and Boolean

Formulas:

Addressing
Modes, Machine

Code, and

Execution Times:

Branch if Lower
(Same as BCS)

If C =1, then (PC) + $0002 + Rel O PC

BLO

For unsigned values, if (Accumulator) < (Memory), then branch

If BLO is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than the

unsigned binary number in memory. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM because these instructions do not affect the
C status bit.

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BLO rel8 REL 25 rr 3/1 PPP/ PU)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

Reference Manual

CPU12 — Rev. 2.0

140

Instruction Glossary

MOTOROLA

BLS

Operation:

Description:

Condition Codes
and Boolean
Formulas:

Addressing
Modes, Machine
Code, and
Execution Times:

Instruction Glossary
Glossary

Branch if Lower or Same B L S

If C+Z=1,then (PC) + $0002 + Rel O PC
For unsigned values, if (Accumulator) < (Memory), then branch

If BLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than or
equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, and TST/CLR/COM because these instructions
do not affect the C status bit.

See 3.9 Relative Addressing Mode for details of branch execution.

S X H I N Z V C

None affected

Address . Access
Source Form Mode Object Code Cycles Detail
BLS rel8 REL 23 rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 rz0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Glossary 141

Instruction Glossary
B L T Branch if Less than Zero B L T

Operation: If N [0V =1, then (PC) + $0002 + Rel 0 PC

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description: If BLT is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the two’s complement number in the accumulator is less than the
two’s complement number in memory.

See 3.9 Relative Addressing Mode for details of branch execution.

Condition Codes
and Boolean S X H I N Z VvV C
Formulas: S U R R A

None affected

Addressing
Modes, Machine Source Form Address Object Code Cycles Acces_s
Code, and Mode Detail
Execution Times: BLT rel8 REL 2D rr 3/1 pPp/ P(1)
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.
Branch Complementary Branch

Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment

r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed

r=m BGE 2C NOV=0 r<m BLT 2D Signed

r=m BEQ 27 z=1 r£m BNE 26 Signed

r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed

r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned

Carry BCS 25 c=1 No Carry BCC 24 Simple

Negative BMI 2B N=1 Plus BPL 2A Simple

Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple

r=0 BEQ 27 z=1 r£0 BNE 26 Simple

Always BRA 20 — Never BRN 21 Unconditional
Reference Manual CPU12 — Rev. 2.0

142 Instruction Glossary MOTOROLA

BM

Operation:

Description:

Condition Codes

and

Boolean

Formulas:

Addressing

Modes,

Machine

Code, and
Execution Times:

Branch if Minus

If N =1, then (PC) + $0002 + Rel O PC

Simple branch

Tests the N status bit and branches if N = 1.

Instruction Glossary

Glossary

BMI

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BMI rel8 REL 2B rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

CPU12 — Rev. 2.0

Reference Manual

MOTOROLA

Instruction Glossary

143

Instruction Glossary

Operation:

Description:

Condition Codes
and Boolean

Formulas:

Addressing
Modes, Machine

Code, and

Execution Times:

Branch if Not Equal to Zero

If Z =0, then (PC) + $0002 + Rel O PC

Simple branch

Tests the Z status bit and branches if Z = 0.

BNE

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BNE rel8 REL 26 rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signed
r<m BLE 2F Z+(NOV)=1 r>m BGT 2E Signed
r<m BLT 2D NOV=1 r=m BGE 2C Signed
r>m BHI 22 C+z=0 r<m BLS 23 Unsigned
r=m BHS/BCC 24 C=0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z=1 r£m BNE 26 Unsigned
r<m BLS 23 C+z=1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 c=1 r=m BHS/BCC 24 Unsigned
Carry BCS 25 c=1 No Carry BCC 24 Simple
Negative BMI 2B N=1 Plus BPL 2A Simple
Overflow BVS 29 V=1 No Overflow BVvVC 28 Simple
r=0 BEQ 27 z=1 r£0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

Reference Manual

CPU12 — Rev. 2.0

144

Instruction Glossary

MOTOROLA

BPL

Operation:

Description:

Condition Codes

and

Boolean

Formulas:

Addressing

Modes,

Machine

Code, and
Execution Times:

Branch if Plus

If N =0, then (PC) + $0002 + Rel O PC

Simple branch

Tests the N status bit and branches if N = 0.

Instruction Glossary

Glossary

BPL

See 3.9 Relative Addressing Mode for details of branch execution.

S X H | N Z v C
None affected
Address . Access
Source Form Mode Object Code Cycles Detail
BPL rel8 REL 2A rr 3/1 ppp/ P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the
branch is taken and one program fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic | Opcode Boolean Test Mnemonic | Opcode Comment
r>m BGT 2E Z+(NOV)=0 r<m BLE 2F Signed
r=m BGE 2C NOV=0 r<m BLT 2D Signed
r=m BEQ 27 z=1 r£m BNE 26 Signe