Using genre analysis to detect AIGenerated academic texts

dc.contributor.authorMelliti, Mimoun
dc.date.accessioned2024-11-18T21:06:52Z
dc.date.available2024-11-18T21:06:52Z
dc.date.issued2024-07
dc.description.abstractThis study investigates the distinguishing characteristics between human-written and AI-generated abstracts through genre analysis techniques. The research examined mini-memoir abstracts authored by MA2 students at Faculty of Arts and Humanities, University of Kairouan, Tunisia and compared them to AI-generated abstracts created specifically for this study using ChatGPT. The analysis focused on text function recurrence, specifically the frequency and quality of elements such as purpose statements, methodology, results, and contextualization. Findings revealed that human-written abstracts exhibit a more comprehensive and detailed presentation, emphasizing contextualization and thorough results, while AI-generated abstracts tend to prioritize clear and explicit purpose statements with less depth in results and contextual information. The study highlights the need for targeted teacher training and rigorous assessment criteria to uphold academic integrity and address the challenges posed by AI in scholarly writing.
dc.format19 p.
dc.identifier.citationMelliti, M. (2024). Using genre analysis to detect AI-Generated academic texts. Diá-Logos, 16(29), 09–27.
dc.identifier.doihttps://doi.org/10.61604/dl.v16i29.377
dc.identifier.issn2958-9754
dc.identifier.urihttp://hdl.handle.net/11715/2742
dc.language.isoen
dc.publisherEditorial Universidad Don Bosco
dc.subjectGenre Analysis
dc.subjectAI-generated Texts
dc.subjectAcademic Abstracts
dc.subjectHuman-AI Comparison
dc.titleUsing genre analysis to detect AIGenerated academic texts
dc.typeArticle
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
EDG-ACA-07102024-0092.pdf
Tamaño:
157.72 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: